Landslide Susceptibility Zonation in a 1:100,000 Geological Map (Case Study: Kiasar, Mazandaran Province)
Subject Areas : hazards and GeographyRuholah Taghavi 1 * , Dr. Alireza Jafarirad 2 , Mohammad Sadegh Zangeneh 3 , Ahmad Khalili Avati 4 , Saeb Taghavi 5
1 - M.A., Environmental Geology, Faculty of Environment and Energy, Islamic Azad University, Science and Research Branch, Tehran, Iran.
2 - Ph.D Geographical Information System, Faculty of Environment and Energy, Islamic Azad University, Science and Research Branch, Tehran, Iran.
3 - M.A., GIS, Agricultural Engineering System and Natural Resources Organization, Khuzestan Province
4 - M.A., Hydrology, Payam Noor University, Abhar, Iran.
5 - B.A., Geology, Sari Branch, Islamic Azad University, Sari, Iran
Keywords: Zonation, Landslide, Overlay, Kiasar, GIS, AHP,
Abstract :
Landslides represent a significant natural hazard, causing substantial damage and economic losses worldwide. Accurate landslide susceptibility assessment is crucial for mitigating these risks. This study employs a Geographic Information System (GIS) and the Analytical Hierarchy Process (AHP) to investigate and map landslide susceptibility in the Kiasar 1:100,000 quadrangle, Iran. This study employed a comprehensive set of influencing factors to assess landslide susceptibility including geology, slope, aspect, precipitation, seismicity, faults and folds, distance to roads, distance to rivers, erosion, and land use. Among the selected criteria, precipitation and slope were assigned the highest weights of 0.27 and 0.22, respectively, reflecting their significant influence on landslide occurrence. Conversely, drainage and land use received the lowest weights of 0.034, indicating their relatively lesser impact. The study findings revealed that approximately 6% (151.68 square kilometers) of the total study area (2500 square kilometers) is classified as susceptible to landslides. This corresponds to 22% of the total area occupied by villages within the investigated region. Furthermore, field verifications confirmed that the main power transmission lines and primary oil pipelines are not exposed to landslide hazards. However, some mines within the study area were identified as being at risk. Within the study area, two industrial facilities – a bakery and a fruit preservation plant – were identified as being located within landslide-prone zones. The high correlation between historical landslide occurrences and the methodology employed in this research suggests that the adopted approach is well-suited for landslide susceptibility mapping in mountainous regions characterized by climatic and vegetation diversity.
1) انتظاری، مژگان، وکردوانی، موسی (1401). پهنهبندی خطر زمینلغزش با استفاده از روشهای مبتنی بر GIS و دادههای راداری (مطالعه موردی: فریدون شهر). مجله مخاطرات محیط طبیعی،11(33)، 177-196.
2) حجازی زاده، زهرا، خسروی، آراس، حسینی، سید اسعد، رحیمی، علیرضا، وکربلایی، علیرضا (1400). پتانسیلسنجی مناطق کویری، بیابانی و سواحل مکران به منظور کسب انرژی از خورشید با استفاده از منطق فازی و مدل تحلیل سلسله مراتبی. نشریه تحقیقات کاربردی علوم جغرافیایی، 21(63)، 1-18.
3) ززولی، محمد، فلاح، وفایی نژاد، علیرضا، آل شیخ، علی اصغر، ومدیری، مهدی(1398). پهنهبندی احتمال وقوع زمینلغزش با استفاده از مدلهای آنتروپی شانون و ارزش اطلاعات در محیط GIS مطالعه موردی بخش رودبار الموت شرقی- استان قزوین. فصلنامه اطلاعات جغرافیایی، 28(112)، 123-136.
4) لجم اورک، مرتضی، وپیری، زهرا (1402). پهنهبندی خطر وقوع زمینلغزش با استفاده از مدل تحلیل سلسله مراتبی (AHP) و فن GIS (مطالعه موردی: شهرستان باغملک). مجله جغرافیا و مخاطرات طبیعی، 12(47)، 193-215.
5) یمانی، مجتبی، حسن پور، سیروس، مصطفایی، ابوالفضل، و شادمان رودپشتی، مجید (1391). نقشه پهنهبندی خطر زمینلغزش در حوضه آبخیز کارون بزرگ با استفاده از مدل AHP درمحیط GIS. جغرافیا و برنامه ریزی محیطی، 23(4 (پیاپی 48))، 39-56.
6) Ahmad, R. A., Singh, R. P., & Adris, A. (2017). Seismic hazard assessment of Syria using seismicity, DEM, slope, active faults and GIS. Remote Sensing Applications: Society and Environment, 6, 59-70.
7) Arjmandzadeh, R., Sharifi Teshnizi, E., Rastegarnia, A., Golian, M., Jabbari, P., Shamsi, H., & Tavasoli, S. (2020). GIS-based landslide susceptibility mapping in Qazvin province of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 619-647.
8) Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
9) Baharvand, S., Rahnamarad, J., Soori, S., & Saadatkhah, N. (2020). Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS. Environmental Earth Sciences, 79, 1-10.
10) Bera, A., Mukhopadhyay, B. P., & Das, D. (2019). Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96, 935-959.
11) Chen, W., Chai, H., Zhao, Z., Wang, Q., & Hong, H. (2016a). Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environmental Earth Sciences, 75, 1-13.
12) Chen, T., Niu, R., & Jia, X. (2016b). A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences, 75, 1-16.
13) Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., ... & Duan, Z. (2018). Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the total environment, 626, 1121-1135.
14) Chen, W., & Li, Y. (2020). GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena, 195, 104777.
15) Das, S., Sarkar, S., & Kanungo, D. P. (2022). GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194(4), 234.
16) Guha-Sapir, D., Hoyois, P., Wallemacq, P., & Below, R. (2017). Annual disaster statistical review 2016. The numbers and trends, 1-91.
17) Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., ... & Glass, G. E. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684.
18) Kohno, M., & Higuchi, Y. (2023). Landslide susceptibility assessment in the Japanese archipelago based on a landslide distribution map. ISPRS International Journal of Geo-Information, 12(2), 37.
19) Moradi, M., Bazyar, M. H., & Mohammadi, Z. (2012). GIS-based landslide susceptibility mapping by AHP method, a case study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2(7), 6715-6723.
20) Moresi, F. V., Maesano, M., Collalti, A., Sidle, R. C., Matteucci, G., & Scarascia Mugnozza, G. (2020). Mapping landslide prediction through a GIS-based model: A case study in a catchment in southern Italy. Geosciences, 10(8), 309.
21) Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., ... & M. Melesse, A. (2019). Landslide susceptibility mapping using different GIS-based bivariate models. Water, 11(7), 1402.
22) Psomiadis, E., Charizopoulos, N., Efthimiou, N., Soulis, K. X., & Charalampopoulos, I. (2020). Earth observation and GIS-based analysis for landslide susceptibility and risk assessment. ISPRS international journal of geo-information, 9(9), 552.
23) Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: a review. Bulletin of engineering Geology and the Environment, 69, 215-233.
24) Roccati, A., Paliaga, G., Luino, F., Faccini, F., & Turconi, L. (2021). GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land, 10(2), 162.
25) Sejati, A. E., Karim, A. T. A., & Tanjung, A. (2020). The compatibility of a GIS map of landslide-prone areas in Kendari City Southeast Sulawesi with actual site conditions. In Forum Geografi (Vol. 34, No. 1, pp. 41-50).
26) Trigila, A., Iadanza, C., Esposito, C., & Scarascia-Mugnozza, G. (2015). Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249, 119-136.
27) Vakhshoori, V., Pourghasemi, H. R., Zare, M., & Blaschke, T. (2019). Landslide susceptibility mapping using GIS-based data mining algorithms. Water, 11(11), 2292.
28) Yazdadi, E, A. & Ghanavati, E. (2016). Landslide hazard zonation by using AHP (analytical hierarchy process) model in GIS (geographic information system) environment (case study: Kordan watershed). Int J Sci High Technol, 2, 24-39.
29) Zou, S., Abuduwaili, J., Duan, W., Ding, J., De Maeyer, P., Van De Voorde, T., & Ma, L. (2021). Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Scientific reports, 11(1), 15032.