بررسی اثرات تلقیح میکوریزا در سطوح مختلف آبیاری و نیتروژن برخصوصیات مورفولوژیک و فیزیولوژیک ذرت
محورهای موضوعی : یافته های نوین کشاورزیامید علیزاده 1 * , اسلام مجیدی 2 , حبیب الله نادیان 3 , قربان نورمحمدی 4 , محمد رضا عامریان 5
1 - عضو هیات علمی دانشگاه آزاد اسلامی واحد فیروزآباد
2 - موسسة تحقیقات اصلاح و تهیه نهال و بذرکرج
3 - عضو هیات علمی دانشگاه ملاثانی اهواز
4 - عضو هیات علمی دانشگاه شاهرود
5 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
کلید واژه: تنش خشکی, ذرت, نیتروژن, میکوریزا,
چکیده مقاله :
به منظور بررسی اثرات تلقیح قارچ میکوریزا در سطوح مختلف آبیاری و نیتروژن بر بعضی خصوصیات فیزیولوژیک و مورفولوژیک ذرت رقم سینگل کراس 704 آزمایشی به صورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی در سه تکرار در سال زراعی 1384 انجام شد. آزمایشها در ایستگاه پژوهشی آموزشی دانشگاه آزاد اسلامی واحد فیروزآباد انجام گرفت. نتایج نشان داد که اثرات ساده نیتروژن، میکوریزا، سطوح آبیاری و اثرات متقابل میکوریزا و سطوح آبیاری و نیتروژن بر ارتفاع گیاه، ماده خشک اندام هوایی، ماده خشک ریشه، سطح برگ و طول ریشه معنی دار بودند. افزایش مصرف کود نیتروژن منجر به افزایش ماده خشک اندام هوایی و طول ریشه در گیاه ذرت شد. این در حالی بود که ماده خشک ریشه با مصرف بیشتر نیتروژن کاهش یافت. نسبت ریشه به اندام هوایی، طول ریشه و درصد ریشه کلنی ذرت تحت تاثیر سطوح مختلف آبیاری قرار گرفت، طوری که با افزایش شدت تنش خشکی طول ریشه و درصد ریشه کلنی شده کاهش یافت و در مقابل نسبت ریشه به اندام هوایی افزایش یافت. به طور کلی نتیجه پاسخ رشد میکوریزایی به افزایش شدت تنش خشکی مثبت بوده و نسبت ریشه به اندام هوایی در تیمار میکوریزا نسبت به شاهد تحتتنش خشکی بیشتر بود.
In order to investigation the effects of mycorrhiza inoculation in different levels of irrigation and nitrogen on morphological and physiological traits of corn variety ksc 704 an experiment was carried out on factorial based on RCBD whit 3 replications. Experiments were done in research and education station of Islamic Azad University of Firouzabad branch in 2004. Results showed that simple effects of nitrogen, mycorrhiza, irrigation levels and interaction effect of mycorrhiza and irrigation levels and nitrogen on patterns such as plant height, shoot dry matter, root dry matter, leaf area and root length were significant. When mycorrhiza rose it caused increase of shoot and root dry matter and root/shoot ratio nitrogen fertilizer addition, increased shoot dry matter and root length of corn but also root dry matter was reduced by adding nitrogen. Root/shoot ratio and root length and percent of root colonization effected due to different levels of irrigation, in this case with increase of drought stress intensity, root length and percent of root colonization was decreased but ratio of root/shoot increased. Generally, the mycorrhiza growth response with drought stress intensity and root/shoot in mycorrhiza treatment toward check in drought stress were increased.
1-فاجریا، ان کا. 1374. افزایش عملکرد گیاهان زراعی ترجمه هاشمی دزفولی، ا. عوض کوچکی وم. بنایان اول انتشارات جهاد دانشگاهی 278 صفحه.
2- Armstrong, R. D., Helyar, K. R. and Christie, E.K. 1992. Vesicular-arbuscular mycorrhiza in semi-arid pastures of South-West Queensland and their effect on growth responses to phosphorus Australian Journal of Agricultural Research 43: 1143-1155.
3- Auge, R. M., Schekel and K. A. Wample Rl. 1986. Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New phytol. 103: 107-116.
4-Auge, R. M. Schekel and K. A. Wample Rl. 1987. Rose leaf elasticity changes in response. To mycorrhizal colonization and drought acclimation physiol. Plant journal.70: 175-182.
5-Auge, R. M. Stodola, J. W. tims. And J. E. Saxton AM. 2001. Moisture retention properties of a mycorrhizal soil. Plant soil 230: 87-97.
6- Bannes, D. L. and O. G. Wooley. 1969. Effect of moisture stress at different stages of growth. I comparison of a single-eared and a two-eared corn hybrid Agronomy .journal. 61: 788-790.
7- Bobinson, R. G. 1978. Production and culture. In: sun flower science and technology. Carter J.F. (ed) sevies Na 19. AM. Soc Agron. Madison. W.I, USA.PP 89-134.
8- Bennett, J. M. J. W. Jones. B. zur. and L. C. Hammond. 1986. Interaction effects of nitrogen and water stresses on water relations of field-grown corn leaves. Agron. Journal. 78: 273-280
9- Clark, R. B. and S. K. zeto. 1996. Iron acquisition by mycorrhizal maize grown on Alkaline soil. journal of plant nutrition 19 (2):247-264
10- Davies, Jr. F. T., Powter.J. R. and lindermna. R. G. 1992. Mycorrhizal and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. Journal of plant physiology 139: 289-294.
11- Davies, Jr. F. T., Puryear. J. D., newton, R. J., Egill, J. N. and Jrossi. Ja. S. 2001. Mycorrhizla fongi enhance accumulation and tolerance of chromium In sunflower. Journal of plant physiology 158: 777-786.
12- Dell Amico J.toriecillas A., rodriguez P., Morte, A. and Sanchez-Blanco mj. 2002. Responses of tomato pelants associated with the arbuscular Mycorrhizla fungus Glomus clarum during drought and recovery. Journal.Agric.Sci 138:387-393.
13- Denmead, O.T. and R. H. show. 1960. Evapotranspriation in relation to the development of the corn crop. Agron. Journal. 51: 725-726.
14- Dhillon, S. S., Vidiella, P. E., Aquilera. E. Friese, C. F., De leon, E. Armesto, J. J. and zak, J. C. 1995. Mycorrhizal plants and fungi in the fog-tree pacific caastal desert of chile. Mycorrhiza 5: 381-386.
15- Eck, H. V. 1984. Irrigated corn yield response to nitrogen and ater. Agron. Journal. 76: 421-428.
16- Faber BA. Zasoski Rj.Mjnns DN. Schakel K. 1991. A method for measuring hyphal uptake in mycorrhizal plants. Candian.Journal.Botany 69: 87-94.
17- Gaur, A. and A. Adholey. 2000. Mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biological fertiizersl soils 35: 214-218.
18- Gavito, M. E. and M. H. Miller. 1998. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize Plant and soil 2: 177-186.
19- Jakobsem, I., L. K. Abbott and A. D. Robson. 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with trifolium subterraneum. L. 1. Spread of hyphae and phosphorus inflow inflow roots.New phytol. 120:371-380.
20- Kaya, C., Higgs. D. and Kirnak H. tas l. 2003. Mycorrhizal Colonization improves fruit yield and water use efficiency in water melon grown under well-watered and water stressed condition. Plant soil 253 (2):287-290.
21- Khaliq, A. and F. E. Sanders. 1997. Effects of phosphorus Application and vesicular arbusicular mycorrhizal inoculation on The Growth and phosphorus Nutrition of maize. Journal of plant nutrition, 20(11):1607-1616.
22- Liu, a. c. Hamel and Bl. Ma. 2000. Acquistion of cu.zn.mn and fe by mycorrhizal maize. grown in soil at different p and micronutrient levels: Mycorrhiza 9: 331-336.
23- Lopez-Sanchez, M. E. and Hornubia. M. 1992. Seasonal variation of vesicular-arbuscular mycorrhizae in eroded soils from southern spain. Mycorrhiza 2: 33-39.
24- Marschner, H1995. Mineral nutration of higher plants. Academic press. London.448.pp
25- Mckersie, B. D. and Y. Y. Leshem. 1994. Stress and stress coping in cultivated plants. Kluwer Academic publishers. Dordrecht. The Nether lands
26- Nadian, H. S. E. Smith, A. M. Alston and R. S. Murray. 1996. The effect of soil compaction on growth and p uptake by trifolrum subterranum plant soil 182: 39-49.
27- Pesarakli, M. 1995. Handbook of plant and crop physiology united stattes of America publisher. 1004 p
28- Quilambo, OA. 2000. Functioning of peanut under nutrient deficiency and drouyht stress in relation to symbiotic associared. P h D Thesis university of Groningen. The Netherlands.
29- Ruiz-lozano JM, Azcon R. 1996. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in leltuce plants. Agric. Ecosys. Envocon. 60: 175-181.
30- Ruiz-lozano JM, Azcon R. Gomcz M. 1996a. Alleviation of salt stress by arbuscular Mycorrhizal Glomus Species in Lactuca Sativa plnts. Physiol. Plant journal. 98: 767-772.
31- Ruiz-lozano JM. Azcon R. plama. JM. 1996. Superoxide dismutase activity in arbuscular mycorrhizal lactuca sativa plants subjected to drought stress. New phytol. 134: 327-333.
32- Sanders LR, Koide RT. 1994. Nutrient acquisition and community structure in co-occuring mycotrophic and non-mycotrophic old-field annuals. Funct. Ecol. 8: 77-84.
33- Sanchez-Diaz M. Honrubia M. 1994. Water relations and alleviation of drought stress in mycorrhizal plants. In lmpact of Arbuscular mycorrhizas on sustainable Agriculture and Natural Ecosystems PP 167-168. Birkhauser verlag Basel. Switzerland
34- Stocker, O. 1986. Physioloyical and morphological changes in plant due to water deficiency. Agron.Journal. 65: 63-74.
35- Shawn, M., kaeppler. J. L., parke. S. M., Muller. L. S., charles stuber and william f. tracy. 2000. Variation among maize inbred lines and Detection of Quantitative trait for Growth at low phosphoros and responsiveness to Arbuswlor Mycorrhizal fungi. Crop science.vol 40-358-364.
36- Sylvia, D. M. L. C. hammond, J. M. Bennett and S. B Linda. 1993. Field response of maize to a vam fungus and water manegment.Agron. Journal.85:193-198.
37- Vamerali, T. M. saccomani, S. Bona, G. Mosca, M. guarise and A. Ganis. 2003. A comparison of root characteristics in relation to nutrient and water stress in tow maize hybrids plant soil 255-157-167.
38- Virant, klun.I. and N. Gogala. 1995. Impad of vam on phosphorus nutrition of maize with low soluble phosphate fertilization. Journal of plant nutrition.18(9)-1815-1823.
39- Wienhold, B. J. T., P. trooien and G. A. Reichman. 1995. Yield and nitrogen use effeciency of Irrigated corn in The northern Great plans. Agron. Journal. 87: 842-84.