مروری بر اهمیت سیلیس در گیاهان " جذب، انتقال و تأثیر آن بر تنش مواد معدنی در شرایط اسیدی"
محورهای موضوعی : یافته های نوین کشاورزیپیمان زندی 1 * , سایکات کومار باسو 2 , ریلیان جینگ 3
1 - مؤسسه علوم گیاهی ،آکادمی علوم کشاورزی چین، پکن، جمهوری خلق چین
2 - گروه علوم زیستی، دانشگاه لتبریج، لتبریج، کانادا
3 - مؤسسه علوم گیاهی ،آکادمی علوم کشاورزی چین، پکن، جمهوری خلق چین
کلید واژه: سیلیس, ناقلین, محدودیت فسفر, سمیت آلومینیوم و منگنز, اسیدیته خاک,
چکیده مقاله :
سیلیس (Si) به عنوان یک عنصر سودمند برای بسیاری از گونه های گیاهی بویژه در شرایط تنش شناخته شده است. در گذشته تحقیقات زیادی در جهت تعیین مکانیزم های درگیر در جذب و انتقال سیلیس توسط گیاهان آوندی صورت پذیرفته است. تحقیقات گسترده نشان داده اند سیلیس می تواند تنش های معدنی مختلفی را در گیاهان رشد یافته در شرایط اسیدی شامل سمیت منگنز و آلومینیوم به همراه کمبود فسفر کاهش دهد. همچنین در شرایط خاک های قلیایی، سیلیس از طریق رسوب گذاری در آندودرم واگزودرم ریشه گیاهان جذب آپوپلاستی سدیم راکاهش داده و منتج به افزایش نسبت پتاسیم به سدیم (برقراری یک حالت تعادل) و در نهایت کاهش فشار تنش قلیایی می شود. تا به حال 4 ناقل سیلیس شناسایی شده و اطلاعات بسیار اندکی در خصوص واکنش این ناقلین در شرایط تنش موجود می باشد. لذا تحقیقات در این زمینه جهت روشن نمودن ارتباط بین این ناقلین و فواید سیلیس برای گیاهانی که در معرض تنش مواد معدنی قرار گرفته اند لازم و ضروری به نظر می رسد. شواهد و قرائن ارائه شده نشان می دهند فراهمی سیلیس و انباشت بعدی آن بر بافت های گیاهی می تواند به عنوان یک استراتژی جهت ارتقای بهره وری زراعی در خاک های اسیدی بکار گرفته شود. این مقاله یافته های اخیر را در مورد تأثیر جذب و انتقال سیلیس (Si) بر روی تنش معدنی در شرایط اسیدی به طور خلاصه بررسی می کند.
Silicon (Si) is widely recognized as an important element for most plant species grown especially under stress situations. Recent research has extensively studied the mechanisms involved in the absorption and transmission of Si in vascular plants and different types of silicon transporters have been discovered. Si has the ability to ameliorate several in-organic stresses under acidic conditions including manganese and aluminum toxicity and phosphorous scarcity. Furthermore, under alkaline conditions, silicate deposits in the root exo- and endodermis result in obstruction of root apoplastic Na+ absorption and maintenance of K+/Na+ balance; thereby significantly improving plant alkalinity tolerance. Four Si carriers namely, LSi1, LSi2, LSi3 and LSi4 have now been identified; although little information is available regarding their responses under stress conditions. Hence, it is important to study the connection between such Si-carriers and the Si proficiency for plants undergoing mineral stress. Evidence presented in the paper indicates that silicon availability and subsequent accumulation on plant tissues can serve as an appropriate strategy for improving crop productivity in acidic soils. The current paper briefly reviews the latest investigations with respect to the effect of sorption and transport of Si in plants under mineral stress in acidic soil condition.
1- Arnon, D. I. and Stout, P.R. 1939. The essentiality of certain elements in minute quantity for plant with special reference to copper. Plant Physiol. 14:371–375
2- Arunakumara, K., Walpol, B. and Yoon, M. H. 2013. Aluminum toxicity and tolerance mechanism in cereals and legumes – A review. J. Korean Soc. Appl. Bi. 56:1–9
3- Barceló, J., Guevara, P. and Poschenrieder, C. H. 1993. Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. Mexicana). Plant Soil. 154:249–255
4- Baylis, A. D., Gragopoulou, C., Davidson, K. J. and J. D. Birchall. 1994. Effects of silicon on the toxicity of aluminum to soybean. Commun. Soil Sci. Plan. 25:537–546
5- Bokor, B., S. Bokorová, S. Ondos, R. Svubová, Z. Lukacova, M. Hyblova, T. Szemes, and A. Lux. 2014. Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. Environ. Sci. Pollut. Res. Int. 22(9):6800-6811. doi:10.1007/ s11356-014-3876-6
6- Bolan, N. S., M. J. Hedley, and R. E. White. 1991. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil. 134:53–63
7- Broadley, M., P. Brown, I. Cakmak, J. F. Ma, Z. Rengel, and F. Zhao. 2012. Beneficial Elements. Pp 249–269. In: Marschner P (Ed) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Elsevier, Amsterdam, Netherland
8- Chandler-Ezell, K., D. Pearsall, and J. Zeidler. 2006. Root and tuber phytoliths and starch grains document manioc (Manihot esculenta), arrowroot (Maranta arundinacea), and llere´n (Calathea sp.) at the Real Alto site. Ecuador. Econ. Bot. 60:103–120
9- Chen, C. H. and J. Lewin. 1969. Silicon as a nutrient element for Equisetum arvense. Can. J. Botany 47:125–131
10- Cheong, Y. W. Y. and P.Y. Chan. 1973. Incorporation of P32 in phosphate esters of the sugar cane plant and the effect of Si and Al on the distribution of these esters. Plant Soil. 38:113–123
11- Chiba, Y., N. Mitani, Yamaji, N. and J. F. Ma. 2009. HvLsi1 is a silicon influx transporter in barley. Plant J. 57:810–818
12- Cocker, K. M., D. E. Evans, and M. J. Hodson. 1998a. The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in plants mechanism? Physiol. Plantarum 104:608–614
13- Cocker, K. M., D. E. Evans, and M. J. Hodson. 1998b. The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): malate exudation as evidence for an in planta mechanism. Planta 204:318–323
14- Cornelis, J. T., B. Delvaux, R. B. Georg, Y. Lucas, J. Ranger, and S. Opfergelt. 2011. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeo-sciences 8:89–112
15- Corrales, I., C. Poschenrieder, and J. Barceló. 1997. Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant Soil 190:203–209
16- Currie, H. A. and C. C. Perry. 2007. Silica in plants: biological, biochemical and chemical studies. Ann. Bot-London 100:1383–1389
17- Datnoff, L. E., Deren, C. W. and G. H. Snyder. 1997. Silicon fertilization for disease management of rice in Florida. Crop Prot. 16:525–531
18- Delhaize, E. and P. R. Ryan. 1995. Aluminium toxicity and tolerance in plants. Plant Physiol. 107:315–321
19- De, N. and S. H. Datta. 2007. Relationship between phosphorus sorption and soil acidity as affected by bicarbonate and silicate ions. Commun. Soil Sci. Plan. 38:679–694
20- Deren, C. W. 2001. Plant genotype, silicon concentration and silicon-related responses. Pp 149–158. In: Datnoff LE, Snyder GH, Korndorfer GH (Eds) Silicon in Agriculture. Elsevier Science BV, Amsterdam, Netherland
21- Deshmukh, R., J. Vivancos, V. Guérin, H. Sonah, C. Labbé, Belzile, F. and R. Bélanger. 2013. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol. Biol. 83:303–315
22- Dietzel, M. 2000. Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Ac 64:3275–3281
23- Dragisic Maksimovic, J., J. Bogdanovic, V. Maksimovic, and M. Nikolic. 2007. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutr. Soil Sci. 170:739–744
24- Dragisic Maksimovic, J., M. Mojovic, V. Maksimovic, V. Römheld, and M. Nikolic. 2012. Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J. Exp. Bot. 63:2411–2420
25- El-Jaoual, T. and D. Cox. 1998. Manganese toxicity in plants. J. Plant Nutr. 21:353–386
26- Epstein, E. 1999. Silicon. Annu. Rev. Plant Phys. 50:641–664
27- Fang, C. X., Q. S. Wang, Y. Yu, Q. M. Li, H. L. Zhang, X. C. Wu, T. Chen, and W. X. Lin. 2011. Suppression and over expression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul. 65:1–10
28- Fisher, R. A. 1929. A preliminary note on the effect of sodium silicate in increasing the yield of barley. J. Agr. Sci. 19:132–139
29- Foy, C. D. 1992. Soil chemical factors limiting plant root growth. Adv. Soil Sci. 19: 97–149
30- Führs, H., S. Götze, A. Specht, A. Erban, S. Gallien, D. Heintz, A. Van Dorsselaer, J. Kopka, H. P. Braun, and W. J. Horst. 2009. Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. J. Exp. Bot. 60:1663–1678
31- Galvez, L., R. B. Clar, L. M. Gourley, and J. W. Maranville.1989. Effects of silicon on mineral composition of sorghum grown with excess manganese. J. Plant Nutr. 12:547–561
32- Gong, H., X. Zhu, K. Chen, S. Wang, and C. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313–321
33- Goodwin, S. B. and T. R. Sutter. 2009. Microarray analysis of Arabidopsis genome response to aluminium stress. Biol. Plantarum 53:85–99
34- Grégoire, C., W. Rémus-Borel, J. Vivancos, C. Labbé, F. Belzile, and R. R. Bélanger. 2012. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J. 72:320–330
35- Guntzer, F., Keller, C. and J. D. Meunier. 2012. Benefits of plant silicon for crops: a review. Agron. Sustain. Dev. 32:201–213
36- Hammond, K. E., D. E. Evans, and M. J. Hodson. 1995. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 173:89–95
37- Hartono, A. 2008. The effect of calcium silicate on the phosphorus sorption characteristics of Andisols Lembang West Java. Jurnal Tanah dan Lingkungan 10:14–19
38- Henriet, C., X. Draye, I. Oppitz, R. Swennen, and B. Delvaux. 2006. Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374
39- Hodson, M. J. and A. G. Sangster. 1993. The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X-ray microanalysis. Ann Bot-London 72:389–400
40- Hodson, M. J., and A. G. Sangster. 1999. Aluminium/silicon interactions in conifers. J. Inorg. Biochem. 76:89–98
41- Horiguchi, T. and S. Morita. 1987. Mechanism of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. J. Plant Nutr. 10: 2299–2310
42- Horst, W. J., M. Fecht, A. Naumann, Wissemeier, A. H. and P. Maier. 1999. Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr. Soil Sci. 162:263–274
43- Horst, W. J. and H. Marschner. 1978. Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil 50:287–303
44-
Horst, W. J., Y. Wang, and D. Eticha. 2010. The role of the apoplast in Al induced inhibition of root elongation and in Al resistance of plants: a review. Ann. Bot-London 106:185–197
45- Iwasaki, K., P. Maier, M. Fecht, and W. J. Horst. 2002. Influence of the apoplastic silicon concentration on the manganese tolerance of cowpea (Vigna unguiculata L. Walp.). J. Plant Physiol. 136: 3762–3770
46- Iwasaki, K. and A. Matsumura. 1999. Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). Soil Sci. Plant Nutr. 45: 909–920
47- Kidd, P. S., M. Llugany, C. Poschenrider, B. Gunse, and J. Barcelo. 2001. The role of roots exudates in aluminium resistence and silicon-induced amelioration of aluminium toxicity in three varities of maize (Zea mays L.). J. Exp. Bot. 52:1339–1352
48- Kim, Y. H., A. L. Khan, D. H. Kim, and S. Y. Lee. 2014. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14:13
49- Knight, C. T. G. and S. D. Kinrade. 2001. A primer on the aqueous chemistry of silicon. Pp 57–84. In: Datnoff LE, Snyder GH, Korndorfer GH (Eds) Silicon in Agriculture. Elsevier Science BV, Amsterdam, Netherland
50- Kochian, L. V., O. A. Hoekenga, and M. A. Piñeros. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55: 459–493
51- Kostic-Kravljanac, L. M. 2015. Modulation of the processes in wheat rhizosphere in responses to the amendments of soils degraded by mining waste. PhD Thesis, University of Belgrade, (in Serbian, with an abstract in English)
52- Lee, Y. B., C. Hoon, J. Y. Hwang, I. B. Lee, and P. J. Kim. 2004. Enhancement of phosphate desorption by silicate in soils with salt accumulation. Soil Sci. Plant Nutr. 50:493–499
53- Lee, Y. B. and P. J. Kim. 2007. Reduction of phosphate adsorption by ion competition with silicate in soil. Korean J. Environ. Agric. 26:286–293
54- Li, P., A. Song, Z. Li, Fan, F. and Y. Liang. 2012. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil 354:404–419
55- Liang, Y., H. Hua, Y. G. Zhu, J. Zhang, C. Cheng, and V. Römheld. 2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol. 172:63–72
56- Liang, Y., M. Nikolic, R. Bélanger, H. Gong, and A. Song. 2015. Silicon in Agriculture. Springer, Dordrecht
57- Liang, Y., J. Si, and V. Römheld. 2005. Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol. 167:797–804
58- Liang, Y., W. Sun, Y.G. Zhu, and P. Christie. 2007. Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147:422–428
59- Likhoshway, Y. V., Y. A. Masyukova, T. A. Sherbakova, D. P. Petrova, and M. A. Grachev. 2006. Detection of the gene responsible for silicic acid transport in Chrysophycean algae. Dokl Biol. Sci. 408:256–260
60- Ma, J. F., A. Higashitani, K. Sato, and K. Takeda. 2003. Genotypic variation in silicon concentration of barley grain. Plant Soil 249:383–387
61- Ma, J. F., M. Sasaki, and H. Matsumoto. 1997. Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil 188:171–176
62- Ma, J. F., and E. Takahashi. 1990a. Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119
63- Ma, J. F. and E. Takahashi. 1991. Effect of silicate on phosphate availability for rice in P-deficient soil. Plant Soil 133:151–155
64- Ma, J. F., and E. Takahashi. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science BV, Amsterdam, Netherland
65- Ma, J. F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. 2006. A silicon transporter in rice. Nature 440: 688–691
66- Ma, J. F., N. Yamaji, N. Mitani, K. Tamai, S. Konishi, T. Fujiwara, M. Katsuhara, and M. Yano. 2007a. An efflux transporter of silicon in rice. Nature 448:209–212
67- Ma, J. F., N. Yamaji, K. Tamai, and N. Mitani. 2007b. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 145:919–924
68- Marron, A. O., M. J. Alston, D. Heavens, M. Akam, M. Caccamo, P.W. Holland, and G. Walker. 2013. A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc. Biol. Sci. 280(1756):20122543. doi: 10.1098/rspb.2012.2543.
69- Marschner, H. 1997. Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London, UK
70- Mengel, K. and E. A. Kirkby. 2001. Principles of Plant Nutrition. Kluwer Academic Publishers, Dordrecht
71- Mitani, N., Y. Chiba, Yamaji, N. and J.F. Ma. 2009a. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142
72- Mitani, N. and J. F. Ma. 2005. Uptake system of silicon in different plant species. J. Exp. Bot. 56:1255–1261
73- Mitani, N., N. Yamaji, Y. Ago, K. Iwasaki, and J. F. Ma. 2011a. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J. 66:231–240
74- Mitani, N., N. Yamaji, and J. F. Ma. 2008. Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflügers Archiv. 456:679–686
75- Mitani, N., N. Yamaji, and J. F. Ma. 2009b. Identification of maize silicon influx transporters. Plant Cell Physiol. 50:5–12
76- Mitani, N., N. Yamaji, and J. F. Ma. 2011b. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal. Behav. 6: 991–994
77- Mitani, N., N. Yamaji, Zhao, F. J. and J. F. Ma. 2011c. The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J. Exp. Bot. 62:4391–4398
78- Montpetit, J., J. Vivancos, N. Mitani, N. Yamaji, W. Rémus-Borel, F. Belzile, J. F. Ma, and R. R. Bélanger. 2012. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol. Bio. 79:35–46
79- Mora, M. L., M. A. Alfaro, S. C. Jarvis, R. Demanet, and P. Cartes. 2006. Soil aluminium availability in Andisols of Southern Chile and its effect on forage production and animal metabolism. Soil Use Manage. 22:95–101
80- Mora, M. L., G. Baeza, C. Pizarro, and R. Demanet. 1999. Effect of calcitic and dolomitic lime on physicochemical properties of a Chilean Andisol. Commun. Soil Sci. Plan 30:427–439
81- Nanayakkara, U. N., W. Uddin, and L. Datnoff. 2008. Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant Soil 303:83–94
82- Neumann, D. and C. De Figueiredo. 2002. A novel mechanism of silicon uptake. Protoplasma 220:59–67
83- Nikolic, M., N. Nikolic, Y. Liang, E. A. Kirkby, and V. Römheld. 2007. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol. 143:495–503
84- Owino-Gerroh, C. and G. J. Gascho. 2004. Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Commun. Soil Sci. Plan 35:2369–2378
85- Parfitt, R. L. 1978. Anion adsorption by soils and soil materials. Adv. Agron. 30:1–50
86- Prabagar, S., M. J. Hodson, and D. E. Evans. 2011. Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies L. Karst.). Environ. Exp. Bot. 70: 266–276
87- Rains, D. W., E. Epstein, R. J. Zasoski, and M. Aslam. 2006. Active silicon uptake by wheat. Plant Soil 280:223–228
88- Raven, J. A. 2001. Silicon transport at the cell and tissue level. Pp 41–55. In: Datnoff LE, Snyder GH, Korndorfer GH (Eds) Silicon in Agriculture. Elsevier Science BV, Amsterdam, Netherland
89- Rengel, Z. 2000. Uptake and transport of manganese in plants. Pp 57–87. In: Sigel A, Sigel H (Eds) Metal Ions in Biological Systems. Marcel Dekker, New York, US
90- Ribera, A., C. Inostroza-Blancheteau, P. Cartes, Z. Rengel, and M. L. Mora. 2013. Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol. Bioch. 73:77–82
91- Robson, A. D. and M. G. Pitman. 1983. Interactions between nutrients in higher plants. 15: 147-180. In: La¨uchli A, Bieleski RL (Eds) Encyclopedia of Plant Physiology. Springer-Verlag, Berlin, Germany
92- Rogalla, H. and V. Römheld. 2002. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ. 25:549–555
93- Romero, A., F. Munévar, and G. Cayón. 2011. Silicon and plant diseases. A Review. Agron. Colomb. 29:473–480
94- Ryan, P. R. and E. Delhaize. 2010. The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct. Plant Biol. 37:275–284
95- Ryden, J. C., J. R. McLauchlin, and J. K. Syers. 1977. Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. J. Soil Sci. 28:72–92
96- Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116:447–453
97- Schröder, H. C., S. Perović-Ottstadt, M. Wiens, R. Batel, I. M. Müller, and W. E. G. Müller. 2004. Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Cell Tissue Res. 316: 271–280
98- Shahnaz, G., E. Shekoofeh, D. Kourosh, and B. Moohamadbagher. 2011. Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. J. Med. Plant Res. 5:5818–5827
99- Singh, V. P., D. K. Tripathi, D. Kumar, and D. K. Chauhan. 2011. Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol. Trace Elem. Res. 144:1260–1274
100- Snyder, G. H. 1991. Developed of a silicon test for Histosol-grown rice. Belle Glade EREC Research Report EV-1991-2. University of Florida, Belle Glade, USA, pp 29‒39
101- Takahashi, E., J. F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. J. Agr. Food Chem. 2: 99–122
102- Tamai, K. and J. F. Ma. 2003. Characterization of silicon uptake by rice roots. New Phytol. 158:431–436
103- Vance, C. P., C. Uhde-Stone, and D. L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423–447
104- Van der Vorm, P. D. J. 1980. Uptake of Si by five plant species, as influenced by variation in Si-supply. Plant Soil 56:153–156
105- Wang, Y., Stass, A. and W. J. Horst. 2004. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 136: 3762–3770
106- Wickramasinghe, D. B. and D. L. Rowell. 2006. The release of silicon from amorphous silica and rice straw in Sri Lankan soils. Biol. Fert. Soils 42:231–240
107- Wu, J. W., Y. Shi, Y. X. Zhu, Y. C. Wang, and H. J. Gong. 2013. Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–825
108- Yamaji, N., Y. Chiba, N. Mitani, and J. F. Ma. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160:1491–1497
109- Yamaji, N. and J. F. Ma. 2009. A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21: 2878–2883
110- Yamaji, N. and J. F. Ma. 2011. Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci. Plant Nutr. 57:259–264
111- Yamaji, N., N. Mitani, and J. F. Ma. 2008. A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389
112- Yamaji, N., A. Sasaki, J. Xia, K. Yokosho, Mitani, N. and J. F. Ma. 2013. Role of node-located transporters in mineral distribution in rice. In: Proceeding of XVII International Plant Nutrition Colloquium: Plant nutrition for nutrient and food security, pp 129-130
113- Yamamoto, Y., Kobayashi, Y. and Matsumoto, H. 2001. Lipid peroxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125:199–208
114- Zsoldos, F., A. Vashegyi, Pecsvaradi, A. and Bona, L. 2003. Influence of silicon on aluminium toxicity in common and durum wheats. Agronomie 23:349–354
_||_