سورفکتانت طبیعی استخراجشده از علفمرغ و نانو ذرات تیتانیوم برای افزایش برداشت نفت در مخازن کربناته
محورهای موضوعی : زبان اصلی مجله انگلیسی می باشد! ( ترجمه عنوان: رهیافت های نوین در محیط زیست و اکولوژی کاربردی)
سعید علمداری
1
,
معین نبی پور
2
*
,
امین اژدرپور
3
,
بیژن هنرور
4
,
نادیا اسفندیاری
5
1 - دانشگاه آزاد اسلامی واحد مرودشت، گر.ه مهندسی شیمی
2 - Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdash
3 - گروه مهندسی نفت، دانشگاه آزاد اسلامی واحد مرودشت
4 - دانشگاه آزاد اسلامی واحد مرودشت
5 - گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
کلید واژه: سورفکتانت سبز, علفمرغ, کشش بینسطحی , زاویه تماس, امولسیون, ضریب برداشت نفت,
چکیده مقاله :
This study investigates the potential of chickweed (Stellaria media)–derived natural surfactants, combined with Nano-TiO₂, for enhanced oil recovery (EOR) in carbonate reservoirs. The addition of Nano-TiO₂ further improved stability, IFT reduction, and wettability alteration, benefiting from synergistic interactions between nanoparticles, surfactant molecules, and divalent cations. Foamability studies revealed strong and persistent foaming behavior, indicating additional potential for mobility control. Core flooding experiments confirmed that tertiary injection of chickweed surfactant increased recovery by ~14% OOIP, while the hybrid surfactant–nanoparticle solution achieved ~20% OOIP, outperforming surfactant-only flooding. These results demonstrate that chickweed-derived surfactants, especially in combination with nanoparticles, provide an eco-friendly and effective alternative to synthetic chemicals for EOR applications in challenging carbonate reservoirs.
[1] Xiao L, Hou J, Sun J, Yang Y. Phase behavior of EOR-Oriented dilutable Single-Phase microemulsions. Fuel 2025;381:133695. https://doi.org/https://doi.org/10.1016/j.fuel.2024.133695.
[2] Quintella CM, Rodrigues PD, Ramos-de-Souza E, Carvalho EB, Nicoleti JL, Hanna SA. Integration of EOR/IOR and environmental technologies in BRICS and nonBRICS: A patent-based critical review. Energy Reports 2025;13:747–58. https://doi.org/https://doi.org/10.1016/j.egyr.2024.11.081.
[3] Ramesh Dadi N, Kumar Maurya N, Gupta P. Advancing foam EOR: A Comprehensive Examination of Key Parameters and Mechanisms from Surfactants to Nanoparticles. J Mol Liq 2024;415:126177. https://doi.org/https://doi.org/10.1016/j.molliq.2024.126177.
[4] Bello MN, Shafiei A. A novel green nanocomposite for EOR: Experimental Investigation of IFT Reduction, wettability Shift, and nanofluid stability. J Mol Liq 2024;414:126187. https://doi.org/https://doi.org/10.1016/j.molliq.2024.126187.
[5] Sami B, Azdarpour A, Honarvar B, Nabipour M, Keshavarz A. Application of a novel natural surfactant extracted from Avena Sativa for enhanced oil recovery during low salinity water flooding: Synergism of natural surfactant with different salts. J Mol Liq 2022;362:119693. https://doi.org/https://doi.org/10.1016/j.molliq.2022.119693.
[6] Chhetri AB, Watts KC, Rahman MS, Islam MR. Soapnut Extract as a Natural Surfactant for Enhanced Oil Recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2009;31:1893–903. https://doi.org/10.1080/15567030802462622.
[7] Navaie F, Esmaeilnezhad E, Jin Choi H. Xanthan gum-added natural surfactant solution of Chuback: A green and clean technique for enhanced oil recovery. J Mol Liq 2022;354:118909. https://doi.org/https://doi.org/10.1016/j.molliq.2022.118909.
[8] Norouzpour M, Nabipour M, Azdarpour A, Akhondzadeh H, Santos RM, Keshavarz A. Experimental investigation of the effect of a quinoa-derived saponin-based green natural surfactant on enhanced oil recovery. Fuel 2022;318:123652. https://doi.org/https://doi.org/10.1016/j.fuel.2022.123652.
[9] Moradi M, Karimi S, Behnajady B, Esmailzadeh M. Green Solvent-Driven Chalcopyrite Dissolution: Ternary DES (ChCl/MOA/PTSA) for High-Efficiency Copper Extraction via RSM Optimization, Kinetics, and Molecular Dynamics Insights. Miner Eng 2025;233:109606. https://doi.org/https://doi.org/10.1016/j.mineng.2025.109606.
[10] Azdarpour A, Mohammadian E, Norouzpour M, Liu B. The effects of a novel Bio-based surfactant derived from the Acacia concinna plant on chemical enhanced oil recovery in the presence of various salts and a synthesized HSPAM polymer. J Mol Liq 2023;386:122474. https://doi.org/https://doi.org/10.1016/j.molliq.2023.122474.
[11] Cerón-Camacho R, Cisneros-Dévora R, Soto-Castruita E, Ramírez-Pérez JF, Martínez-Magadán JM, Oviedo-Roa R, et al. Greener process to prepare and scale-up zwitterionic macro cyclic dihydroxy-aza-crown ether and their corresponding supramolecular pairs to enhanced oil recovery application. J Clean Prod 2023;420:138446. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.138446.
[12] Norouzpour M, Azdarpour A, Nabipour M, Santos RM, Khaksar Manshad A, Iglauer S, et al. Red beet plant as a novel source of natural surfactant combined with ‘Smart Water’ for EOR purposes in carbonate reservoirs. J Mol Liq 2023;370:121051. https://doi.org/https://doi.org/10.1016/j.molliq.2022.121051.
[13] Nowrouzi I, Mohammadi AH, Khaksar Manshad A. Chemical Enhanced Oil Recovery from Carbonate Reservoirs by Coherent Surfactant and Surfactant–Alkali (SA) Slug Injection Using a Green Cationic Surfactant Synthesized from Avocado Oil. Energy & Fuels 2023;37:15553–69. https://doi.org/10.1021/acs.energyfuels.3c02667.
[14] Dashtaki SRM, Ali JA, Majeed B, Manshad AK, Nowrouzi I, Iglauer S, et al. Evaluation the role of natural surfactants from Tanacetum and Tarragon plants in EOR applications. J Mol Liq 2022;361:119576. https://doi.org/https://doi.org/10.1016/j.molliq.2022.119576.
[15] Amamra S, Kaabi I, Arrar L, Baghiani A, Hamla M, Aouni SI, et al. Thymus vulgaris extract: A green approach to antioxidant efficacy, antibacterial action, and corrosion inhibition. J Environ Chem Eng 2025;13:116067. https://doi.org/https://doi.org/10.1016/j.jece.2025.116067.
[16] Singh A, Raj Kashyap A, M. S. Abdullah M, Vajpayee S, Sharma T. Investigation on Rheological Characterization and Salt Tolerance Potential of Paraffinic O/W Emulsions of Natural Surfactant for Crude Emulsification and Mobilization. Ind Eng Chem Res 2024;63:10825–41. https://doi.org/10.1021/acs.iecr.4c00364.
[17] Viveros LTL, Rafati R, Sharifi Haddad A. Impact of coated and non-coated magnetic nanoparticles on oil-water separation in green surfactant-based emulsions. Colloids Surf A Physicochem Eng Asp 2024;697:134366. https://doi.org/https://doi.org/10.1016/j.colsurfa.2024.134366.
[18] Deljooei M, Zargar G, Nooripoor V, Takassi MA, Esfandiarian A. Novel green surfactant made from L-aspartic acid as enhancer of oil production from sandstone reservoirs: Wettability, IFT, microfluidic, and core flooding assessments. J Mol Liq 2021;323:115037. https://doi.org/https://doi.org/10.1016/j.molliq.2020.115037.
[19] Nafisifar A, Khaksar Manshad A, Reza Shadizadeh S. Evaluation of a new green synthesized surfactant from linseeds - chemical EOR implications from sandstone petroleum reservoirs. J Mol Liq 2021;342:117263. https://doi.org/https://doi.org/10.1016/j.molliq.2021.117263.
[20] Asl FO, Zargar G, Manshad AK, Iglauer S, Keshavarz A. Experimental investigation and simulation for hybrid of nanocomposite and surfactant as EOR process in carbonate oil reservoirs. Fuel 2022;319:123591. https://doi.org/https://doi.org/10.1016/j.fuel.2022.123591.
[21] Ahmadi A, Manshad AK, Akbari M, Ali JA, Jaf PT, Abdulrahman AF. Nano-stabilized foam for enhanced oil recovery using green nanocomposites and anionic surfactants: An experimental study. Energy 2024;290:130201. https://doi.org/https://doi.org/10.1016/j.energy.2023.130201.
[22] Razzaghi-Koolaee F, Mehrabianfar P, Soltani Soulgani B, Esfandiarian A. A comprehensive study on the application of a natural plant-based surfactant as a chemical enhanced oil recovery (CEOR) agent in the presence of different ions in carbonate reservoirs. J Environ Chem Eng 2022;10:108572. https://doi.org/https://doi.org/10.1016/j.jece.2022.108572.
[23] Amin JS, E.Nikooee, Ghatee MH, Ayatollahi Sh, Alamdari A, Sedghamiz T. Investigating the effect of different asphaltene structures on surface topography and wettability alteration. Appl Surf Sci 2011;257:8341–9. https://doi.org/https://doi.org/10.1016/j.apsusc.2011.03.123.
[24] Singh A, Sharma T, Kumar RS, Arif M. Biosurfactant Derived from Fenugreek Seeds and Its Impact on Wettability Alteration, Oil Recovery, and Effluent Treatment of a Rock System of Mixed Composition. Energy & Fuels 2023;37:6683–96. https://doi.org/10.1021/acs.energyfuels.3c00105.
[25] Mun J-H, Ahn C, Jamal A, Bae T-H. Comparative assessment for the zero carbon desalination plant using nanofiltration pretreatment and membrane contactor-based carbon mineralization technology. Desalination 2025;605:118746. https://doi.org/https://doi.org/10.1016/j.desal.2025.118746.
[26] Liu S, Geng Y, Li C, Hu M, Liu J, Gao Q, et al. Exploring the microscopic synergism of hydrophobic nanoparticles and surfactants in surfactants-assisted nanofluids (SAN) for enhanced oil recovery. Geoenergy Science and Engineering 2025;246:213632. https://doi.org/https://doi.org/10.1016/j.geoen.2024.213632.
[27] Liang T, Zhao X, Yuan S, Zhu J, Liang X, Li X, et al. Surfactant-EOR in tight oil reservoirs: Current status and a systematic surfactant screening method with field experiments. J Pet Sci Eng 2021;196:108097. https://doi.org/https://doi.org/10.1016/j.petrol.2020.108097.
[28] Panagopoulos D, Alamdari AA, Quinson J. Surfactant-free colloidal gold nanoparticles: Room temperature synthesis, size control and opportunities for catalysis. Mater Today Nano 2025;29:100600. https://doi.org/https://doi.org/10.1016/j.mtnano.2025.100600.
[29] El-Masry JF, Maalouf E, Abbas AH, Bou-Hamdan KF. Advancements in green materials for chemical enhanced oil recovery: A review. Petroleum 2025;11:259–76. https://doi.org/https://doi.org/10.1016/j.petlm.2025.03.007.
[30] Al-Ghamdi A, Haq B, Al-Shehri D, Muhammed NS, Mahmoud M. Surfactant formulation for Green Enhanced Oil Recovery. Energy Reports 2022;8:7800–13. https://doi.org/https://doi.org/10.1016/j.egyr.2022.05.293.