Development of a Precise Mechanical Mechanism for Controlling Some Solenoid Valves
Subject Areas :
Peyman Heydari
1
*
,
Reza Abbasi Kesbi
2
1 - Department of Mechanics and Structures, Hamedan Technical & Vocational College (Mofateh), Hamedan, Iran
2 - MEMS & NEMS Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
Keywords: Mechanical Mechanism, Solenoid Valve, Pneumatic Cylinders, Microswitches,
Abstract :
Microcontrollers are small computers that can handle the processing of a small system. Today, microcontrollers are widely used and can be used in many cases. However, most microcontrollers are sensitive to industrial environments and three-phase electricity and suffer from environmental disturbances. In this paper, a mechanical system for controlling several pneumatic cylinders is presented and compared to an electronic system that is developed based on microcontrollers. Compared to the electronic system, the results show that this mechanical system has high accuracy and reproducibility in any environment. Therefore, this mechanism can be used in the industry instead of microcontrollers. In addition, this proposed system is not limited to several microswitches and can be used for more microswitches in different currents. It is enough to increase the diameter of the camshafts and the shaft length.
[1] Bolanakis, D.E. 2019. A survey of research in microcontroller education. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje. 14(2):50-57. doi: 10.1109/RITA.2019.2922856.
[2] Abbasi-Kesbi, R., Asadi, Z. and Nikfarjam, A. 2020. Developing a wireless sensor network based on a proposed algorithm for healthcare purposes. Biomedical engineering letters. 10(1):163-170. doi: 10.1007/s13534-019-00140-w.
[3] Abbasi‐Kesbi, R., Fathi, M. and Sajadi, S.Z. 2023. Movement examination of the lumbar spine using a developed wearable motion sensor. Healthcare Technology Letters. 10(6):122-132. doi: doi.org/10.1049/htl2.12063.
[4] Prakash, A., Tyagi, P., Katiyar, A.K. and Dubey, S.K. 2023. A microcontroller-based compact device for measuring weak magnetic fields. IEEE Sensors Journal. 23(13):14339-14345. doi: 10.1109/JSEN.2023.3279366.
[5] Abbasi‐Kesbi, R., Memarzadeh‐Tehran, H. and Deen, M.J. 2017. Technique to estimate human reaction time based on visual perception. Healthcare technology letters. 4(2):73-77. doi: 10.1049/htl.2016.0106.
[6] Abbasi‐Kesbi, R., Valipour, A. and Imani, K. 2018. Cardiorespiratory system monitoring using a developed acoustic sensor. Healthcare technology letters. 5(1):7-12. doi: 10.1049/htl.2017.0012.
[7] Valipour, A. and Abbasi-Kesbi, R. 2017. May. A heartbeat and respiration rate sensor based on phonocardiogram for healthcare applications. In 2017 Iranian Conference on Electrical Engineering. 45-48. doi: 10.1109/IranianCEE.2017.7985502.
[8] Suprapto, Y., Jalaluddin, F., Moonlight, L.S. and Suharto, T.I. 2024. Microcontroller-Based Door Security System Design Using Fingerprint. Journal Of Nesia Engineering Science. 1(1):17-24. doi: 10.11591/jnesc.
[9] Żyliński, M., Nassibi, A. and Mandic, D.P. 2023. Design and implementation of an atrial fibrillation detection algorithm on the ARM Cortex-M4 microcontroller. 23(17):7521. doi: 10.3390/s23177521.
[10] Abbasi-Kesbi, R., Nikfarjam, A. and Memarzadeh-Tehran, H. 2016. A patient-centric sensory system for in-home rehabilitation. IEEE Sensors Journal. 17(2):524-533. doi: 10.1109/JSEN.2016.2631464.
[11] Arachchige, K.G., Branch, P. and But, J. 2023. Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks. 23(14): 6265. doi: 10.3390/s23146265.
[12] Abbasi-Kesbi, R. and Nikfarjam, A. 2018. A miniature sensor system for precise hand position monitoring. IEEE Sensors Journal. 18(6):2577-2584. doi: 10.1109/JSEN.2018.2795751.
[13] Buonanno, L., Di Vita, D., Carminati, M. and Fiorini, C. 2020. A directional gamma-ray spectrometer with microcontroller-embedded machine learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 10(4):433-443. doi: 10.1109/JETCAS.2020.3029570.
[14] Abbasi‐Kesbi, R., Fathi, M., Najafi, M. and Nikfarjam, A. 2023. Assessment of human gait after total knee arthroplasty by dynamic time warping algorithm. Healthcare Technology Letters. 10(4):73-79. doi: 10.1049/htl2.12047.
[15] Hercog, D. and Gergič, B. 2014. A flexible microcontroller-based data acquisition device. Sensors. 14(6): 9755-9775. doi: 10.3390/s140609755.
[16] Akhavanhezaveh, A. and Abbasi‐Kesbi, R. 2021. Diagnosing gait disorders based on angular variations of knee and ankle joints utilizing a developed wearable motion sensor. Healthcare Technology Letters. 8(5):118-127. doi: 10.1049/htl2.12015.
[17] Roy, P., Saha, J., Dutta, N. and Chandra, S. 2018. Microcontroller based automated room light and fan controller. In 2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT, IEEE):1-4. doi: 10.1109/EDCT.2018.8405090.
[18] Abbasi‐Kesbi, R., Nikfarjam, A. and Akhavan Hezaveh, A. 2018. Developed wearable miniature sensor to diagnose initial perturbations of cardiorespiratory system. Healthcare technology letters. 5(6): 231-235. doi:10.1049/htl.2018.5027.
[19] Chen, C.H., Lin, M.Y. and Liu, C.C. 2018. Edge computing gateway of the industrial internet of things using multiple collaborative microcontrollers. IEEE Network. 32(1):24-32. doi: 10.1109/MNET.2018.1700146.
[20] Abbasi‐Kesbi, R., Nikfarjam, A. and Nemati, M. 2020. Developed wireless sensor network to supervise the essential parameters in greenhouses for internet of things applications. IET Circuits, Devices & Systems. 14(8):1258-1264. doi:10.1049/iet-cds.2020.0085.
[21] Anarghya, A., Rao, S.S., Herbert, M.A., Karanth, P.N. and Rao, N. 2019. Investigation of errors in microcontroller interface circuit for mutual inductance sensor. Engineering Science and Technology, an International Journal. 22(2):578-591. doi:10.1016/j.jestch.2018.11.011.
[22] Kamajaya, L. and Fitri, M.A.S. 2023. Watch winder based on the internet of things. Indonesian Journal of Electrical Engineering and Computer Science. 30(2):721-729.doi:10.11591/ijeecs.v30.i2.pp721-729.
[23] Santhosh, R., Sabareesh, S.U., Aswin, R. and Mahalakshmi, R. 2021. Hardware Design of PIC Microcontroller based Charge controller and MPPT for the Standalone PV-Battery charging system. In 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT, IEEE). doi:10.1109/RTEICT52294.2021.9573523.
[24] Short, M. and Abugchem, F. 2017. A microcontroller-based adaptive model predictive control platform for process control applications. Electronics. 6(4): 88. doi:10.3390/electronics6040088.
[25] Shriwastava, R., Dhote, N., Kadlag, S.S., Thakare, M.P., Kadam, D.P. and Khule, S.S. 2023. Performance analysis and improvement of a high-efficiency DCMLI based PMSM drive for electric vehicle using AVR microcontroller. International Journal of Vehicle Noise and Vibration. 19(3-4): 133-164. doi:10.1504/IJVNV.2023.136060.
[26] Wolf, D., Alexandrov, V., Shatov, D., Rezkov, I., Trefilov, P. and Meshcheryakov, R. 2023. Development of a Firmware for Multirotor UAV Flight Controller Implemented on MCU MDR 32. Interactive Collaborative Robotics: 8th International Conference, ICR 2023, Baku, Azerbaijan. doi: 10.1007/978-3-031-43111-1_31.
[27] Kondaveeti, H.K., Kumaravelu, N.K., Vanambathina, S.D., Mathe, S.E. and Vappangi, S. 2021. A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review. 40:100364. doi:10.1016/j.cosrev.2021.100364.
[28] Lê, M.T., Wolinski, P. and Arbel, J. 2023. Efficient neural networks for tiny machine learning: A comprehensive review. doi: 10.48550/arXiv.2311.11883.