Wide Tuning Range and High Quality Factor MEMS Variable Capacitor with Two Movable Plates in 0.18μm CMOS Technology
Subject Areas : Majlesi Journal of Telecommunication DevicesMina Ashoori 1 , Hooman Nabovati 2
1 - Department of Electrical Engineering , Sadjad Institute of Higher Education , Mashhad , Iran.
2 - Department of Electrical Engineering , Sadjad Institute of Higher Education , Mashhad , Iran.
Keywords: en,
Abstract :
This article introduces the reader to the performance limitations of micro electro mechanical gap-tuning capacitors fabricated in the commercially PolyMUMPs (Polysilicon Multi-user MEMS Process) foundry. And the advantages of the CMOS technology to fabrication of MEMS tunable capacitors are discussed. Also to increase the both of tuning range and quality factor, a three-plate MEMS tunable capacitor with two movable plates is designed and simulated. The simulation of the capacitor was done using the EM3DS software which is demonstrated wide tuning range (300 percent), that is 6 times higher than tuning range of the conventional parallel plate capacitor. The proposed capacitor are designed by using the ALCU metal layers of TSMC 0.18 μm CMOS technology that have caused decreasing the series resistance and increasing the quality factor to 300 in 1 GHZ.
[1] G. Rebeiz, “RF MEMS: Theory, Design, and Technology”, New York, Wiley, 2003, pp. 21-22.
[2] A. Dec and K. Suyama, “Microwave MEMS-based Voltage-controlled Oscillators,” IEEE Trans. Microwave Theory and Techniques, Vol. 48, pp. 1943–1949, Nov. 2000.
[3] H. D. Nguyen, D. Hah, P. R. Patterson, R.Chao, W. Piyawattanametha, E. K. Lau, and M. C. Wu, “Angular Vertical Comb-Driven Tunable Capacitor With High-Tuning Capabilities,” IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, pp. 406–413, JUNE 2004.
[4] V. K. Varadan, K. J. Vinoy and K. A. Jose, “RF MEMS and Their Applications”, USA, Pennsylvania State University, 2003, pp. 228-229.
[5] H. D. Wu, K. F. Harsh, R. S. Irwin, W. Zhang, A. R. Mickelson, and Y. C. Lee, “MEMS DESIGNED FOR TUNABLE CAPACITORS,” 1998 IEEE MTT-S Symp., pp. 127 - 129.
[6] J.Y. Park, Y.J. Yee, H. J. Nam and J. U. Bu, “Micromachined RF MEMS tunable capacitors using piezoelectric actuators,” IEEE MTT-S Symposium, Volume 3, pp. 2111–2114, May 2001.
[7] A. Dec and K. Suyama, “Micromachined Electro-mechanically Tunable Capacitors and their Applications to RFICs,” IEEE Trans. Microwave Theory and Techniques, vol. 46, pp. 2587-2596, 1998.
[8] M. Bakri-Kassem, S. Fouladi, and R. R. Mansour, “Novel High-Q MEMS Curled-Plate Variable Capacitors Fabricated in 0.35 μm CMOS Technology” IEEE Trans. Microwave Theory & Tech., vol. 56, pp. 530-541, Feb. 2008.
[9] R. R. Mansour, S. Fouladi and M. Bakeri-Kassem, “Integrated RF MEMS/CMOS Devices”, 2008 IEEE Design, Test, Integration and Packaging of MEMS/MOEMS Symp., PP. 374-375.
[10] S. Fouladi, M. Bakri-Kassem, and R. R. Mansour, “ An Integrated Tunable Band-Pass Filter Using MEMS Parallel-Plate Variable Capacitors Implemented with 0.35μm CMOS Technology” 2007 IEEE MTT-S Int. Microwave Symp., pp. 505-508.
[11] G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. C. Lu, and L. R. Carley, “Laminated High-Aspect Ratio Microstructures in a Conventional CMOS Process,” in Proc. 1996 IEEE MEMS 96, pp. 13-18.
[12] E. Abbaspour-Sani, N. Nasirzadeh, and G. Dadashzadeh, “Two Novel Structures For Tunable MEMS Capacitor With RF Applications”, in Prog. 2007 Electromagnetics Research, pp. 169–183.
[13] J. Bo Yoon and C. T. C. Nguyen, “A High-Q Tunable Micromechanical Capacitor With Movable Dielectric for RF Applications”, 2000 IEEE Int. Electron Devices Meeting, pp. 489 - 492.
[14] Y. Zhu, M. R. Yuce and S. O. R. Moheimani, “A Low-Loss MEMS Tunable Capacitor with Movable Dielectric”, 2009 IEEE SENSORS Conf., pp. 651 – 654.
[15] H. S. Lee, Y. J. Yoon, D.H. Choi, and J. B. Yoon, “High-Q, Tunable-Gap MEMS Variable Capacitor Actuated With an Electrically Floating Plate”, 2008 IEEE MEMS 2008 Conf., pp. 180 - 183.
[16] S. Fouladi, and R. R. Mansour, “ Reconfigurable Amplifier with Tunable Impedance Matching Networks Based on CMOS-MEMS Capacitors in 0.18 μm CMOS Technology” 2009 IEEE Microsystems and Nanoelectronics Research Conf., PP. 33 - 36.
[17] B. Razavi, “Design of Analog CMOS Integrated Circuits”, Los Angeles, McGraw-Hill, 2001, pp. 604- 611.
[18] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post- CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures,” IEEE Journal of Microelectromech. Syst., vol. 11, pp. 93-101, Apr. 2002.
[19] J. Zou, C. Liu, J. Schutt-Aine, J. Chen, and S. Kang, “Development of a Wide Tuning Range MEMS Tunable Capacitor for Wireless Communication Systems” 2000 Device Research Conf., pp. 109-112.
[20] M. B.Kassem and R. R. Mansour, “An Improved Design for Parallel Plate MEMS Variable Capacitors” IEEE, MlT-S Digest, Ontario, Canada, Vol.2, pp. 865 – 868, 2004.
[21] M. B.Kassem and R. R. Mansour, “High Tuning Range Parallel Plate MEMS Variable Capacitors With Arrays Of Supporting Beams” 2006 IEEE International Micro Electro Mechanical Systems Conf., pp. 666 – 669.
[22] M. B. Kassem and R. R. Mansour, “Two Movable Plate Nitride Loaded MEMS Variable Capacitor” IEEE Trans. Microwave Theory and Techniques, vol. 52, pp. 831–837, March 2004.
[23] S. Pu, A. Laister, A. Holmes, E. Yeatman, R. Miles, I. Robertson and G. Dou, “High-Q Continuously Tunable Zipping Varactors with Large Tuning Range”, 2008 IEEE, APMC 2008 Conf., pp. 1 - 4.
[24] B. Razavi, “Design of Analog CMOS Integrated Circuits”, Los Angeles, University of California, McGraw-Hill, 2001, pp. 604-611.
[25] S. Campbell, “The Science and Engineering of Microelectronic Fabrication”, New York, University of Minnesota, 2001, chapter 11.