مرور سیستماتیک بر تأثیر بامهای سرد بر آسایش حرارتی و بهرهوری انرژی ساختمانها در اقلیم گرم و خشک
محورهای موضوعی : معمار شهرشکوه سادات اسدالهی 1 , منصوره طاهباز 2 * , نیلوفر نیک قدم 3 , مهناز محمودی زرندی 4
1 - گروه معماری،واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه معماری، دانشگاه شهید بهشتی، تهران، ایران.(نویسنده مسئول)
3 - گروه معماری،واحد تهران جنوب،دانشگاه آزاد اسلامی، تهران، ایران.
4 - گروه معماری،واحد تهران شمال ،دانشگاه آزاد اسلامی،تهران، ایران.
کلید واژه: بام سرد, آسایش حرارتی, بهرهوری انرژی, اقلیم گرم و خشک, طراحی غیرفعال, مرور سیستماتیک,
چکیده مقاله :
بیان مسئله:در اقلیمهای گرم و خشک، چالشهای مرتبط با آسایش حرارتی و مصرف بالای انرژی سرمایشی، از مسائل اساسی در طراحی پایدار ساختمانها محسوب میشوند. بام سرد بهعنوان یکی از راهکارهای غیرفعال طراحی معماری، با قابلیت بازتابش تابش خورشیدی و کاهش دمای سطح بام، نقش مؤثری در بهبود عملکرد حرارتی و انرژی دارد. هدف: هدف این مقاله، ارائه یک مرور سیستماتیک از پژوهشهای بینالمللی و داخلی در این زمینه است. این مقاله، یک مرور سیستماتیک از مطالعات منتشرشده بین سالهای 2000 تا 2025 پیرامون اثر بام سرد بر آسایش حرارتی و بهرهوری انرژی ساختمانها در اقلیم گرم و خشک ارائه میدهد. روش پژوهش:جستجوی منابع در پایگاههای Scopus، Web of Science، ScienceDirect، SID، و MagIran انجام شد و بر اساس معیارهای PRISMA، ۱۵ مقاله نهایی برای تحلیل انتخاب شدند. یافتهها نشان داد که بام سرد میتواند دمای هوای داخلی را تا ۵ درجه سانتیگراد کاهش داده و مصرف انرژی سرمایشی را بین ۱۵٪ تا ۴۰٪ کاهش دهد. نکتههاهمچنین، فناوریهای مختلف بام سرد، از انواع سنتی و نانویی تا سیستمهای پیشرفته مانند PCM و تهویهشونده، بسته به شرایط اقلیمی و اجرایی، عملکرد متفاوتی از خود نشان میدهند.یافتههای مهم: در نهایت، این مقاله با تحلیل همراستایی و واگراییهای مطالعات، عوامل مؤثر بر عملکرد بام سرد را شناسایی کرده و پیشنهادهایی برای تحقیقات آینده ارائه میدهد. نتیجه: این تحقیق میتواند بهعنوان مرجعی کاربردی برای معماران، مهندسان و سیاستگذاران حوزه انرژی و طراحی اقلیمی مورد استفاده قرار گیرد.
State the problem: In hot and arid climates, thermal discomfort and excessive cooling energy demand are major challenges in achieving sustainable building design. Cool roofs, as a passive architectural strategy, reduce roof surface temperature by reflecting solar radiation, thus improving indoor thermal comfort and energy efficiency. Objective: Aim: The aim of this article is to provide a systematic review of international and domestic research in this field. This study presents a systematic review of literature published between 2000 and 2025 on the impacts of cool roofs on thermal comfort and energy performance of buildings in hot and dry climates. and "What factors (materials, design, location, maintenance) play a role in its effectiveness?" Research method A comprehensive search was conducted in Scopus, Web of Science, ScienceDirect, SID, and MagIran databases, and following PRISMA guidelines, 15 studies were selected for in-depth analysis. Results reveal that cool roofs can reduce indoor air temperatures by up to 5°C and cooling energy consumption by 15–40%. A wide range of technologies were analyzed—from traditional white surfaces and nanocoatings to advanced PCM and ventilated systems—showing varied effectiveness depending on climatic, material, and maintenance conditions. Tips The study critically evaluates aligned and divergent findings across the literature, identifies key influencing factors, and proposes directions for future research. Conclusion: This review provides a practical reference for architects, engineers, and energy policymakers engaged in climate-responsive design in arid regions.
• اسدالهی، شکوه سادات و طاهباز، منصوره،1400،بام سرد استراتژی مثبت جهت بهبود پارامترهای جزایر گرمایی شهری، مدیریت انرژی و آسایش حرارتی . معماری سبز 25.7 (2021): 1-10.
• مولایی، محمدمهدی، پیله چی ها، پیمان، و افشار، آذر. (1397). ارزیابی انرژی کارایی بام سبز در ایران؛ نمونه موردی: شهرهای تهران, تبریز, رامسر, بندرعباس. مدیریت شهری، 17(52 )، 21-34.
• رزمگاه، فرشاد. (1393). بام خنک: تجربه ای در خنک کردن بام از طریق تغییر رنگ. صفه، 24(65)، 25-34.
• درویش, امیراصلان, مدی, و گرجی مهلبانی. (1400). ظرفیت بازتابش خورشیدی سطوح بام در کاهش مصرف انرژی سرمایشی مساکن شهری، مطالعه موردی: مسکن مهر شهرری. فصلنامه علمی پژوهش های بوم شناسی شهری, 10(20), 111-126.
• Aggarwal, C., & Molleti, S. (2024). State-of-the-Art Review: Effects of Using Cool Building Cladding Materials on Roofs. Buildings, 14(8), 2257. https://doi.org/10.3390/buildings14082257
• Akbari, H., & Levinson, R. (2013). Evolution of cool-roof standards in the US. Advances in Building Energy Research, 1–32. https://doi.org/10.1080/17512549.2013.865559
• Alnuaimi, S. F., & Mohammed, W. M. (2021, February). Living cool: An approach for architectural “cool roof” to decrease the electricity consumption in Iraq. IOP Conference Series: Materials Science and Engineering, 1076(1), 012016. https://doi.org/10.1088/1757-899X/1076/1/012016
• Athmani, W., Sriti, L., Dabaieh, M., & Younsi, Z. (2023). The potential of using passive cooling roof techniques to improve thermal performance and energy efficiency of residential buildings in hot arid regions. Buildings, 13(1), 21. https://doi.org/10.3390/buildings13010021
• Basyouni, Y. A., & Mahmoud, H. (2024). Affordable green materials for developed cool roof applications: A review. Renewable and Sustainable Energy Reviews, 202, 114722. https://doi.org/10.1016/j.rser.2024.114722
• Benmoussa, Y., Ezziani, M., Djire, A. F., Amine, Z., Khaldoun, A., & Limami, H. (2023). Simulation of an energy-efficient cool roof with cellulose-based daytime radiative cooling material. Materials Today: Proceedings, 72, 3632–3637. https://doi.org/10.1016/j.matpr.2023.03.044
• Fanger, P. O. (1970). Thermal Comfort: Analysis and Applications in Environmental Engineering. McGraw-Hill.
• Feng, W., Zhang, Q., Ji, H., Wang, R., Zhou, N., Ye, Q., ... & Lau, S. S. Y. (2019). A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings. Renewable and Sustainable Energy Reviews, 114, 109303.
• Jiang, L., Gao, Y., Zhuang, C., Feng, C., Zhang, X., & Guan, J. (2024). Experiment verification and simulation optimization of phase change material cool roof in summer: A case study of Chongqing, China. Energy, 293, 130613. https://doi.org/10.1016/j.energy.2024.130613
• Rawat, M., & Singh, R. N. (2021). Performance evaluation of a cool roof model in composite climate. Materials Today: Proceedings, 44, 4956-4960.
• Rawat, M., & Singh, R. N. (2022). Techno-economic analysis of cool roof materials in a composite climatic zone. Materials Today: Proceedings, 52, 1406–1410. https://doi.org/10.1016/j.matpr.2021.09.504
• Tang, S., Akkurt, N., Zhang, K., Chen, L., & Ma, M. (2021). Effect of roof and ceiling configuration on energy performance of a metamaterial-based cool roof for low-rise office building in China. Indoor and Built Environment, 30(10), 1739-1750.
• Tian, D., Zhang, J., & Gao, Z. (2023). The advancement of research in cool roof: Super cool roof, temperature-adaptive roof and crucial issues of application in cities. Energy and Buildings, 291, 113131. https://doi.org/10.1016/j.enbuild.2023.113131
• Ulpiani, G. (2021). On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Science of the Total Environment, 751, 141727. https://doi.org/10.1016/j.scitotenv.2020.141727
• Wang, Y., Wang, Z. H., Rahmatollahi, N., & Hou, H. (2024). The impact of roof systems on cooling and building energy efficiency. Applied Energy, 376, 124339. https://doi.org/10.1016/j.apenergy.2024.124339
• Yazdani, H., & Baneshi, M. (2021). Building energy comparison for dynamic cool roofs and green roofs under various climates. Solar Energy, 230, 764-778.
• Yazdani, H., & Baneshi, M. (2021). Building energy comparison for dynamic cool roofs and green roofs under various climates. Solar Energy, 230, 764–778. https://doi.org/10.1016/j.solener.2021.10.001
• Zhao, S., Hai, G., & Zhang, X. (2023). An analysis of the influence of cool roof thermal parameters on building energy consumption based on orthogonal design. Buildings, 14(1), 28. https://doi.org/10.3390/buildings14010028