مقایسه ریزساختار و مقاومت به اکسیداسیون دما بالای پوششهای NiCrAlY ایجاد شده به روش پاشش پلاسمایی اتمسفری (APS) و پاشش پلاسمایی با غلاف جامد محافظ (SSPS)
محورهای موضوعی : خوردگی و حفاظت موادرضا سحرخیز 1 , ضیاء والفی 2 * , مسعود میرجانی 3 , سعید تقیرمضانی 4
1 - دانشجوی کارشناسی ارشد، دانشگاه صنعتی مالکاشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
2 - دانشیار، دانشگاه صنعتی مالکاشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
3 - محقق، دانشگاه صنعتی مالکاشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
4 - مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر ، تهران، ایران
کلید واژه: اکسیداسیون, NiCrAlY, پاشش پلاسمایی اتسفری (APS), پاشش پلاسمایی با غلاف جامد محافظ (SSPS), گاز محافظ, لایه اکسید رشد یافته حرارتی (TGO),
چکیده مقاله :
در پژوهش حاضر، پودر NiCrAlY روی زیرلایه فولادی و Hastelloy X با فرایند پاشش پلاسمایی تحت حفاظت غلاف جامد (SSPS) اعمال شده و مقاومت در برابر اکسیداسیون پوشش های حاصل با پوشش های ایجاد شده با فرایند پاشش پلاسمایی اتمسفری (APS) مورد مقایسه قرار گرفت. نتایج حاصل با میکروسکوپ نوری (OM) و میکروسکوپ الکترونی روبشی (SEM) مورد ارزیابی قرار گرفتند. به منظور بررسی تأثیر غلاف جامد محافظ بر خواص پوشش های فلزی، پارامترهای گاز محافظ در غلاف جامد همچون نوع گاز محافظ (Ar، H 2)، نحوه تزریق گاز محافظ (داخلی، خارجی و یا به طور هم زمان) و نرخ سیلان گاز محافظ مورد بررسی قرار گرفتند. به هنگام استفاده از گاز محافظ دمای جت پلاسما افزایش قابلتوجهی داشت. نتایج آزمون اکسیداسیون عملکرد مناسب پوشش NiCrAlY تحت حفاظت گاز محافظ داخلی آرگون با نرخ سیلان 75 لیتر بر دقیقه را نشان دادند که توانسته حین پاشش، حفاظت از شعله پلاسما را به بهترین نحو انجام دهد و کاهش 8 درصدی اکسید و تخلخل را نتیجه دهد. همچنین کمترین میزان ضخامت لایه اکسید رشد یافته حرارتی (TGO) نیز بعد از 200 ساعت برای این نمونه به دست آمد که بیانگر عملکرد بهتر آن در حفظ عنصر آلومینیوم برای تشکیل مداوم لایه Al2O3حین اکسیداسیون دما بالا است.
In this research, NiCrAlY powder was applied on steel, and Hastelloy X substrates with solid shielding shrouded plasma spray (SSPS) process and compared with atmospheric plasma spraying (APS). The high-temperature oxidation test was also performed on the coatings, and the microstructure of coatings was studied by optical microscopy (OM) and scanning electron microscopy (SEM). To investigate the influence of the SSPS process on the properties of metallic coatings, variable parameters; such as type of shroud gas (Ar, H2), the gas injection method (internal, external or simultaneous) and the flow rate of that, were examined. During the use of shroud gas, the temperature of the plasma jet has increased significantly. The oxidation test results showed the proper performance of NiCrAlY coating under the protection of argon internal shroud gas with a flow rate of 75SLPM, which was able to perform the best plasma flame protection during spraying. It can lead to a reduction in oxide and porosity of coating up to 8%. Also, the lowest thermally grown oxide (TGO) thickness was obtained for this sample after 200 hours of oxidation, indicating its excellent performance in maintaining the Al for the formation of the continuous α-Al2O3 layer during high-temperature oxidation.
[1] ع. قربانیان، م. حاتمی و م. طهری، "بهینهسازی پارامترهای پاشش حرارتی HVOF، برای بهبود مقاومت به اکسیداسیون پوشش MCrAlY توسط روش سطح پاسخ"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 3، صفحه 73-85، 1396.
[2] T. Liu, L. Zheng, G. Zhang & H. Zhang, "Effects of Solid Shield and Shroud on Plasma Jet Flame in APS Process", in ASME 2014 International Mechanical Engineering Congress and Exposition.
[3] P. Song, "Influence of material and testing parameters on the lifetime of TBC systems with MCrAlY and NiPtAl bondcoats", Forschungszentrum Jülich Books, vol. 137, 2012.
[4] R. Ghasemi & H. Vakilifard, "Plasma-sprayed nanostructured YSZ thermal barrier coatings: Thermal insulation capability and adhesion strength", Ceramics International, vol. 43, pp. 8556-8563, 2017.
[5] R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack & D. Stöver, "Overview on advanced thermal barrier coatings", Surface and Coatings Technology, vol. 205, pp. 938-942, 2010.
[6] M. Bai, "Fabrication and characterization of thermal barrier coatings", University of Manchester, A Thesis submitted to The University of Manchester for the degree of Doctor of Philosophy, 2015.
[7] L. Shi, L. Xin, H. Wei, S. L. Zhu & F. H. Wang, "Influences of MCrAlY Coatings and TBCs on Oxidation Behavior of a Ni-Based Single Crystal Superalloy", in Materials Science Forum, vol. 816, pp. 289-296, 2015.
[8] Y. Chen, X. Zhao & P. Xiao, "Effect of microstructure on early oxidation of MCrAlY coatings", Acta Materialia, vol. 159, pp. 150-162, 2018.
[9] P. L. Fauchais, J. V. Heberlein & M. I. Boulos, "Overview of thermal spray", in Thermal spray fundamentals, Springer, pp. 17-72, 2014.
[10] S. Sampath, U. Schulz, M. O. Jarligo & S. J. M. b. Kuroda, "Processing science of advanced thermal-barrier systems", MRS bulletin, vol. 37, pp. 903-910, 2012.
[11] Q. Wei, Z. Yin & H. Li, "Oxidation control in plasma spraying NiCrCoAlY coating", Applied Surface Science, vol. 258, pp. 5094-5099, 2014.
[12] D. Gawne, T. Zhang & B. Liu, "Computational analysis of the influence of a substrate, solid shield and gas shroud on the flow field of a plasma jet", Surface and Coatings Technology, vol. 153, pp. 138-147, 2002.
[13] M. Planche, H. Liao & C. J. S. Coddet "Oxidation control in atmospheric plasma spraying coating", Surface and Coatings Technology, vol. 202, pp. 69-76, 2007.
[14] T. Liu, L. Zheng & H. Zhang, "Effect of Solid Shield on Coating Properties in Atmospheric Plasma Spray Process", Journal of Thermal Spray Technology, vol. 25, pp. 1502-1515, 2016.
[15] S. Matthews "Shrouded plasma spray of Ni–20Cr coatings utilizing internal shroud film cooling", Surface and Coatings Technology, vol. 249, pp. 56-74, 2014.
[16] S. Deshpande, S. Sampath, H. J. S. Zhang & C. Technology, "Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni–Al", Surface and Coatings Technology, 200, pp. 5395-5406, 2006.
[17] H. Choi, B. Yoon, H. Kim & C. Lee, "Isothermal oxidation of air plasma spray NiCrAlY bond coatings", Surface and Coatings Technology, vol. 150, pp. 297-308, 2002.
[18] J. Tusek & M. Suban, "Experimental research of the effect of hydrogen in argon as a shielding gas in arc welding of high-alloy stainless steel", International Journal of Hydrogen Energy, vol. 25, pp. 369-376, 2000.
[19] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی، ف. نعیمی، "بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوششهای MCrAlY اعمالشده به روش HVOF"، فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 3، صفحه 67-80، 1395.
[20] M. Daroonparvar, M. Yajid, N. Yusof, M. S. Hussain & H. Bakhsheshi-Rad, "Formation of a dense and continuous Al2O3 layer in nano thermal barrier coating systems for the suppression of spinel growth on the Al2O3 oxide scale during oxidation", Journal of Alloys and Compounds, vol. 571, pp. 205-22, 2013.
[21] L. Y. Lim & S. A. Meguid, "Modeling and characterisation of depletion of aluminium in bond coat and growth of mixed oxides in thermal barrier coatings", International Journal of Mechanics and Materials in Design, 1-17, 2019.
[22] J. Shi, T. Zhang, B. Sun, B. Wang, X. Zhang & L. Song, "Isothermal oxidation and TGO growth behavior of NiCoCrAlY-YSZ thermal barrier coatings on a Ni-based superalloy", Journal of Alloys and Compounds, 156093, 2020.
_||_