اثر نوع لایه واسط بر خواص مکانیکی و ریزساختار اتصال آلومینیوم 6061 از روش جوشکاری اصطکاکی اغتشاشی (FSW)
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدسید امین کفائی 1 , حامد ثابت 2 , محسن قنبری 3
1 - دانشجوی کارشناسی ارشد مهندسی مواد، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.
2 - دانشیار، گروه مهندسی مواد و متالورژی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.
3 - استادیار، گروه مهندسی مواد و متالورژی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.
کلید واژه: جوشکاری اصطکاکی اغتشاشی, آلومینیوم 6061, لایه واسط,
چکیده مقاله :
در پژوهش حاضر اثر متغیرهای جوشکاری اصطکاکی اغتشاشی فلز آلومینیوم 6061 با استفاده از لایه واسط و بدون لایه واسط انجام شده است. پس از انجام فرآیند جوشکاری، آزمونهای میکرو سختی، کشش و بررسی ریزساختار با استفاده از میکروسکوپ نوری و میکروسکوپ الکترونی روبشی انجام شد. در بین نمونههای جوشکاری شده با لایههای واسط آلومینیوم 4043، 5556 و 2024 و بدون لایه واسط، نمونه جوشکاری شده با نسبت سرعت دورانی به خطی ۲۵ دور بر میلیمتر (سرعت دورانی 1250 دور بر دقیقه و سرعت خطی 50 میلیمتر بر دقیقه) با لایه واسط آلومینیوم 2024 دارای بیشترین استحکام کششی به مقدار ۱۹۲ مگاپاسکال و دارای بیشترین سختی با مقدار 154 ویکرز بود. کمترین استحکام کششی مربوط به نمونه جوشکاری شده با لایه واسط آلومینیوم 4043 با نسبت سرعت دورانی به خطی ۲۵ دور بر میلیمتر (سرعت دورانی 800 دور بر دقیقه و سرعت خطی 5/31 میلیمتر بر دقیقه) به مقدار ۱۶۶ مگاپاسکال بوده و با ۹۶ ویکرز نیز دارای کمترین میزان سختی در قسمت دکمه جوش در بین تمامی نمونهها بود. بررسی ریزساختاری نیز نشاندهنده درشت بودن دانهها در نمونههای جوشکاری شده با لایه واسط و بدون لایه واسط با نسبت سرعت دورانی به خطی ۳۲ دور بر میلیمتر به نسبت بقیه نمونهها بود. نمونه جوشکاری شده با لایه واسط آلومینیوم 4043 و در نسبت سرعت دورانی به خطی ۲۵ دور بر میلیمتر بر دقیقه دارای ریزترین اندازه دانه به مقدار ۹ میکرومتر در بین نمونههای جوشکاری شده با لایه واسط بود. نتایج آزمونها نشان میدهد استفاده از آلومینیوم 5556 و 2024 بهعنوان لایه واسط باعث بهبود خواص مکانیکی ناحیه اتصال گردیده است.
In the current research, the effect of Parameters on friction stir welding of aluminum 6061 metal is carried out using with and without an interlayer. After the welding process, microscopic tests, traction and microscopic examination were performed using optical microscope and scanning electron microscope. Among the welded samples with 4043, 5556, and 2024 aluminum interlayers and without interlayer, the welded specimen with a rotational speed of 1250 rpm and a linear velocity of 50 mm / min with an aluminum interlayer of 2024 has the highest tensile strength 192 MPa and has the most hardness of 154 Vickers. The minimum tensile strength of the welded specimen with the aluminum 4043 as an interlayer at the rotational speed of 800 rpm and the linear velocity of 31.5 mm / min is 166 MPa, and with 96 wickers, it also has the least hardness in the weld button in between All samples were. The microstructure study also showed the larger grain size in the welded samples with the interlayer and without interlayer, with a rotational to linear ratio of 32 rpm as compared to the rest of the specimens. The sample was welded to the aluminum with interlayer of 4043 at a speed of 800 rpm and a linear speed of 31.5 mm / min with the smallest grain size of 9 μm in the samples welded to the interlayer. The results of the tests show that the use of aluminum 5556 and 2024 as an interlayer improves the mechanical properties of the bonding zone.
[1] O. T. Midling, L. D. Oosterkamp & J. Bersaas, "Friction Stir Welding Aluminum Process and Applications. In: Seventh International Conference INALCO’98", Cambridge, UK, April. 1998.
[2] R. S. Mishra & Z. Y. Ma, "Friction Stir Welding and Processing", Materials Science and Engineering A, vol. 50, pp, 1–78, 2005.
[3]C. J. Dawes & W. M. Thomas, "Friction Stir Process Welds Aluminum Alloys". Welding Journal, vol. 75, no. 3, pp, 41–45, 1998.
[4]M. Shirin Abadi Farahani, M. Delpishe & M. M. Divandari, "Investigation of Microstructure Interface and Mechanical Properties of Dissimilar Al/Mg Welded by FSSW with Zn Interlayer", Congress of Mechanical Engineering, vol. 9, pp, 1-9, 2017.
[5] G. Huang, X. Feng & Y. Shen, "Friction Stir Brazing of 6061 Aluminum Alloy and H62 Brass: Evaluation of Microstructure", Mechanical and Fracture Behavior, Materials & Design, vol. 99, pp, 403-411, 2016.
]6[ ر. مکبری، "بررسی جوشکاری اصطکاکی اغتشاشی آلیاژ گروه 1000 آلومینیوم با لایه واسط روی، مس و برنج در محل اتصال"، پایاننامه دانشگاه صنعتی شریف. 1394.
]7 [ع. رضوی و ح. ثابت، "بررسی اثر حضور لایه واسط AA7075 بر ریزساختار و خواص مکانیکی اتصال لب به لب AA1050 جوشکاری شده به روش FSW "، نشریه علوم و فناوری جوشکاری ایران، سال چهارم، ص 18-1، 1397.
[8] A. Suri, "An Improved FSW Tool for Joining Commerical Aluminium Plates", Procedia Materials Science, vol. 6, pp, 1857-1864, 2014.
[9] O. H. Elangovan & Balasubramanian, V. "Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminum Alloy". Materials & Design. vol. 29, pp, 362–373, 2008.
[10] C. H. Mohana Rao & K. Mallikarjuna Rao, "Studies on Friction Stir Welding of Aluminum Alloys 6061- To- 6061 Similar Metals", International Journal of Mechanical Engineering and Technology, vol. 8, no. 1, pp, 264–269, 2017.
[11] G. C. Jadhav, R. S. Dalu, "A Study of Effect Process Parameters in FSW on Tensile Strength of AA6061-T6", International Journal of Advanced Research in Engineering and Technology, vol. 10, no. 2, pp, 482-490, 2019.
[12] Standard Test Methods for Tension Testing of Metallic Materials, ASTM-E8M.
[13] Standard Test Methods for Microindentation Hardness of Materials, ASTM E384.
[14] Standard Guide for Preparation of Metallorgraphic Specimens, ASTM E3.
[15] P. Janaki, R. Ramulu & Narayanan, G, "Internal Defect and Process Parameter Analysis During Friction Stir Welding of Al 6061 Sheets", International Journal of Advance Manufacture Technology, vol. 65, pp, 1515–1528, 2013.
[16] M. Z. H. Khandkar, J. A. Khan & A. P. Reynolds, "Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model". Science and Technology of Welding and Joining, vol. 8, pp, 165–174, 2013.
[17] K. A. A. Hassan, P. B. Pragnell, A. F. Norman, D. A. Price & S. W. Williams, "Effect of Welding Parameters on Nugget Zone Microstructure and Properties in High Strength Aluminum Alloy Friction Stir Welds". Science and Technology of Welding and Joining, vol. 8, pp, 257–268, 2003.
[18] S. Rajakumar, C. Muralidharan & V. Balasubramanian, "Predicting Tensile Strength, Hardness and Corrosion Rate of Friction Stir Welded AA6061-T6 Aluminium Alloy Joints". Materials & Design, vol. 32, pp, 78–90, 2011.
]۱۹[ ف. غروی، ا. ابراهیم زاده و ع. سهیلی، "ارزیابی ریزساختار و خواص مکانیکی اتصال لبه روی هم جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061 در سرعت های پیشروی متفاوت"، فصلنامه فرآیند های نوین در مهندسی مواد ، سال دهم، شماره دوم، ص 129-115، تابستان 1395.
[20] A. Kearney, A. Rooy & L. Elwin, "Properties of Wrought Aluminum and Aluminum Alloys, In Langer, Edward L. Properties and Selection: Nonferrous Alloys and Special-Purpose Material". ASM Handbook, vol. 2, pp, 220-223, 1990.
[21] P. Heurtier, M. J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet & D. Allehaux, "Mechanical and Thermal Modeling of Friction Stir Welding". Journal of Materials Processing Technology, vol. 171, pp, 348–357, 2006.
[22] A. Askari, S. Silling, B. London & M. Mahoney, "Modelling, Analysis of Friction Stir Welding and Processing", TMS. 2001.
[23] S. Sheikhi & C. Bolfarini, "Preliminary Study on the Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds in Aircraft Aluminum Alloys 2024-T351 and 6056-T4", Journal of Materials Processing Technology, vol. 206, pp, 132–142, 2007.
[24] Y. Sato, S. H. C. Park, H. Kokawa, "Microstructural Factors Governing Hardness in Friction Stir Welds of Solid Solution Hardened Al Alloys". Metallurgical & Materials Transactions A, vol. 32, no.12, 3033–3042, 2001.
]۲۵[ ح. آقاجانی درازکلا، م. الیاسی و م. حسین زاده، " بررسی شکل گیری عیوب و لایههای بین فلزی در جوشکاری اصطکاکی اغتشاشی آلومینیم AA1100 به فولادA441 AISI"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره سوم، پاییز 1394.
[26] S. Neetesh, S. Chandrashekhar, A. Kumar & V. R. Chary, "Defects Formation During Friction Stir Welding: A Review", International Journal of Engineering and Management Research, vol. 7, pp, 121-125, 2017.
[27] C. Hamilton, S. Dymek, & A. Sommers, "Athermal Model of Friction Stir Welding in Aluminum Alloys". International Journal of Machine Tools and Manufacture, vol. 48, pp, 1120–1130, 2008.
_||_[1] O. T. Midling, L. D. Oosterkamp & J. Bersaas, "Friction Stir Welding Aluminum Process and Applications. In: Seventh International Conference INALCO’98", Cambridge, UK, April. 1998.
[2] R. S. Mishra & Z. Y. Ma, "Friction Stir Welding and Processing", Materials Science and Engineering A, vol. 50, pp, 1–78, 2005.
[3]C. J. Dawes & W. M. Thomas, "Friction Stir Process Welds Aluminum Alloys". Welding Journal, vol. 75, no. 3, pp, 41–45, 1998.
[4]M. Shirin Abadi Farahani, M. Delpishe & M. M. Divandari, "Investigation of Microstructure Interface and Mechanical Properties of Dissimilar Al/Mg Welded by FSSW with Zn Interlayer", Congress of Mechanical Engineering, vol. 9, pp, 1-9, 2017.
[5] G. Huang, X. Feng & Y. Shen, "Friction Stir Brazing of 6061 Aluminum Alloy and H62 Brass: Evaluation of Microstructure", Mechanical and Fracture Behavior, Materials & Design, vol. 99, pp, 403-411, 2016.
]6[ ر. مکبری، "بررسی جوشکاری اصطکاکی اغتشاشی آلیاژ گروه 1000 آلومینیوم با لایه واسط روی، مس و برنج در محل اتصال"، پایاننامه دانشگاه صنعتی شریف. 1394.
]7 [ع. رضوی و ح. ثابت، "بررسی اثر حضور لایه واسط AA7075 بر ریزساختار و خواص مکانیکی اتصال لب به لب AA1050 جوشکاری شده به روش FSW "، نشریه علوم و فناوری جوشکاری ایران، سال چهارم، ص 18-1، 1397.
[8] A. Suri, "An Improved FSW Tool for Joining Commerical Aluminium Plates", Procedia Materials Science, vol. 6, pp, 1857-1864, 2014.
[9] O. H. Elangovan & Balasubramanian, V. "Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminum Alloy". Materials & Design. vol. 29, pp, 362–373, 2008.
[10] C. H. Mohana Rao & K. Mallikarjuna Rao, "Studies on Friction Stir Welding of Aluminum Alloys 6061- To- 6061 Similar Metals", International Journal of Mechanical Engineering and Technology, vol. 8, no. 1, pp, 264–269, 2017.
[11] G. C. Jadhav, R. S. Dalu, "A Study of Effect Process Parameters in FSW on Tensile Strength of AA6061-T6", International Journal of Advanced Research in Engineering and Technology, vol. 10, no. 2, pp, 482-490, 2019.
[12] Standard Test Methods for Tension Testing of Metallic Materials, ASTM-E8M.
[13] Standard Test Methods for Microindentation Hardness of Materials, ASTM E384.
[14] Standard Guide for Preparation of Metallorgraphic Specimens, ASTM E3.
[15] P. Janaki, R. Ramulu & Narayanan, G, "Internal Defect and Process Parameter Analysis During Friction Stir Welding of Al 6061 Sheets", International Journal of Advance Manufacture Technology, vol. 65, pp, 1515–1528, 2013.
[16] M. Z. H. Khandkar, J. A. Khan & A. P. Reynolds, "Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model". Science and Technology of Welding and Joining, vol. 8, pp, 165–174, 2013.
[17] K. A. A. Hassan, P. B. Pragnell, A. F. Norman, D. A. Price & S. W. Williams, "Effect of Welding Parameters on Nugget Zone Microstructure and Properties in High Strength Aluminum Alloy Friction Stir Welds". Science and Technology of Welding and Joining, vol. 8, pp, 257–268, 2003.
[18] S. Rajakumar, C. Muralidharan & V. Balasubramanian, "Predicting Tensile Strength, Hardness and Corrosion Rate of Friction Stir Welded AA6061-T6 Aluminium Alloy Joints". Materials & Design, vol. 32, pp, 78–90, 2011.
]۱۹[ ف. غروی، ا. ابراهیم زاده و ع. سهیلی، "ارزیابی ریزساختار و خواص مکانیکی اتصال لبه روی هم جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061 در سرعت های پیشروی متفاوت"، فصلنامه فرآیند های نوین در مهندسی مواد ، سال دهم، شماره دوم، ص 129-115، تابستان 1395.
[20] A. Kearney, A. Rooy & L. Elwin, "Properties of Wrought Aluminum and Aluminum Alloys, In Langer, Edward L. Properties and Selection: Nonferrous Alloys and Special-Purpose Material". ASM Handbook, vol. 2, pp, 220-223, 1990.
[21] P. Heurtier, M. J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet & D. Allehaux, "Mechanical and Thermal Modeling of Friction Stir Welding". Journal of Materials Processing Technology, vol. 171, pp, 348–357, 2006.
[22] A. Askari, S. Silling, B. London & M. Mahoney, "Modelling, Analysis of Friction Stir Welding and Processing", TMS. 2001.
[23] S. Sheikhi & C. Bolfarini, "Preliminary Study on the Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds in Aircraft Aluminum Alloys 2024-T351 and 6056-T4", Journal of Materials Processing Technology, vol. 206, pp, 132–142, 2007.
[24] Y. Sato, S. H. C. Park, H. Kokawa, "Microstructural Factors Governing Hardness in Friction Stir Welds of Solid Solution Hardened Al Alloys". Metallurgical & Materials Transactions A, vol. 32, no.12, 3033–3042, 2001.
]۲۵[ ح. آقاجانی درازکلا، م. الیاسی و م. حسین زاده، " بررسی شکل گیری عیوب و لایههای بین فلزی در جوشکاری اصطکاکی اغتشاشی آلومینیم AA1100 به فولادA441 AISI"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره سوم، پاییز 1394.
[26] S. Neetesh, S. Chandrashekhar, A. Kumar & V. R. Chary, "Defects Formation During Friction Stir Welding: A Review", International Journal of Engineering and Management Research, vol. 7, pp, 121-125, 2017.
[27] C. Hamilton, S. Dymek, & A. Sommers, "Athermal Model of Friction Stir Welding in Aluminum Alloys". International Journal of Machine Tools and Manufacture, vol. 48, pp, 1120–1130, 2008.