مطالعه الکتروشیمیایی رفتار خوردگی داغ پوشش نفوذی آلومینایدی روی سوپر آلیاژ اینکونل 713C
محورهای موضوعی : خوردگی و حفاظت مواداسماعیل طاهری 1 , مهدی وردیان 2 *
1 - دانشگاه آزاد اسلامی واحد نجف آباد
2 - دانشگاه آزاد نجف آباد
کلید واژه: خوردگی داغ, اینکونل 713C, پوشش نفوذی آلومینایدی,
چکیده مقاله :
در این پژوهش، مقاومت به خوردگی داغ پوشش نفوذی آلومینایدی اعمال شده روی سوپر آلیاژ اینکونل 713C به روش الکتروشیمیایی مورد بررسی قرار گرفت. در این رابطه، آزمایش های پلاریزاسیون پتانسیودینامیک در دمای 750 درجه سانتیگراد و تحت شرایط اتمسفری در دو نوع نمک مذاب انجام شد. نمک اول حاوی 70% سولفات سدیم و 30% کلرید سدیم و نمک دوم حاوی 70% سولفات سدیم، 25% کلرید سدیم و 5% پنتا اکسید وانادیوم بود. همچنین، ترکیب فازی و ریزساختار پوشش ها و محصولات خوردگی با روش های پراش پرتو ایکس و میکروسکوپ الکترونی روبشی مجهز به طیف سنج تفکیک انرژی بررسی شد. نتایج نشان داد که در حضور ترکیبات وانادیوم قدرت حفاظت کنندگی پوشش بیشتر است و در منحنی پلاریزاسیون آندی پوشش یک ناحیه وسیع با جریان تقریبا ثابت مشاهده می شود. در این محیط، یک لایه متراکم از محصولات خوردگی مشاهده شد. در غیاب وانادیوم، نمونه پوشش دار و بدون پوشش سرعت خوردگی مشابهی نشان دادند اما در محیط حاوی وانادیوم سرعت خوردگی نمونه ها کمتر بود. در این حالت پوشش ها رفتار فعال آندی از خود نشان دادند. محصولات خوردگی در محیط عاری از وانادیوم به صورت متخلخل و ناپیوسته مشاهده شدند.
In this study, the hot corrosion resistance of diffusion aluminide coating on Inconel 713C was investigated using electrochemical techniques. In this regard, potentiodynamic polarization tests were performed at 750 °C in two kinds of molten salts. The former contained 70% sodium sulphate and 30% sodium chloride. The latter was composed of 70% sodium sulphate, 25% sodium chloride and 5% vanadium pentoxide. The phase composition and microstructure of coatings and corrosion products were investigated using XRD and SEM-EDS techniques. The results showed that in the presence of vanadium, the protection efficiency of coatings increased and a current-independent region was observed in anodic polarization curve. Here, a compact corrosion product layer was seen. In absence of vanadium, both coated and uncoated samples exhibited similar corrosion rates. However, in comparison to vanadium-containing environment, all samples showed lower corrosion rate. In this case, the coatings exhibited active anodic behavior. The corrosion products were porous and discontinuous in vanadium free environment.
[1] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی و ف. نعیمی، "بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوشش های MCrAlY اعمال شده به روشHVOF "، فصلنامه فرآیند های نوین در مهندسی مواد، سال دهم، شماره سوم، صفحات 80 - 67، پاییز 1395.
[2] س. ع. خسروی فرد، ا. ح. یقطین، ا. اخباریزاده و ع. عراقی، "بررسی خواص خوردگی سایشی و خوردگی داغ پوشش آلومینا اعمال شده بر روی پایه فولادی به روش پاشش حرارتی حاصل از سوخت اکسیژندار"، فصلنامه فرآیند های نوین در مهندسی مواد، سال دهم، شماره اول، صفحات 69 - 59 ، بهار 1395.
[3] م. طهری، "بهینه سازی پارامترهای پاشش حرارتی HVOF، برای بهبود مقاومت به اکسیداسیون پوشش MCrAlY توسط روش سطح پاسخ"، فصلنامه فرآیند های نوین در مهندسی مواد، سال یازدهم، شماره سوم، صفحات 85 – 73 ، پاییز 1396.
[4] م. طهری، "بررسی تاثیر افزودن تقویت کننده Cr2O3 بر خواص مکانیکی و رفتار اکسیداسیون دمای بالای پوشش استلایت 6 تولید شده به روش پاشش پلاسمایی بر روی زیرلایه IN-738"، فصلنامه فرآیند های نوین در مهندسی مواد، سال یازدهم، شماره اول، صفحات 160–149، بهار 1396.
[5] N. Eliaz & G. Shemesh , “Hot corrosion in gas turbine components”, Engineering Failure Analysis Uhlig CorrosionLaboratory, MassachusettsInstitute of Technology, Cambridge, Vol. 9, pp. 31-43, 2002.
[6] G. A. El-Awadia, S. Abdel-Samada & E. S. Elshazly, “Hot corrosion behavior of Ni based Inconel 617 and Inconel 738superalloys”, Applied Surface Science, Vol. 378, pp. 224–230, 2016.
[7] Q. X. Fan, S. M. Jiang, H. J. Yu & J. Gong, “Microstructure and hot corrosion behaviors of two Co modified aluminide coatings on a Ni-based superalloy at 700°C”, Applied Surface Science, Vol. 311, pp. 214–223, 2014.
[8] D. Pradhan, G. Shankar Mahobia, K. Chattopadhyay & V. Singh, “Effect of pre hot corrosion on high cycle fatigue behavior of the superalloy IN718 at 600 °C”, International Journal of Fatigue, Vol. 114, pp. 120–129, 2018.
[9] Thomas, M. K. Adler Flitton & S. Agarwala, “Corrosion Fundamentals, Testing, and Protection”, ASM Handbook, Vol. 13A, 2003.
[10] H. Haiyan, L. Zongjie & W. Wang, “Microstructure and hot corrosion behavior of Co–Si modified aluminide coating on nickel based superalloys”, Corrosion Science, Vol. 100, pp. 466-473, 2015.
[11] B. Ching-Yuan, L. Yi-Jun & K. Chun-Hao, “Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation”, Surface and Coatings Technology, Vol. 183, pp. 74-88, 2004.
[12] K. Shirvani, M. Saremi, A. Nishikata & T. Tsuru, “Electrochemical study on hot corrosion of Si- modified aluminide coated In-738LC in Na2SO4-20 wt.% NaCl melt at 750 °C”, Corrosion Science, Vol. 45, pp. 1011-1021, 2003.
[13] M. Sarvghad, T. Steinberg & G. Will, “Corrosion of stainless steel 316 in eutectic molten salts for thermal energy Storage”, Solar Energy Materials and Solar Cells, 2017.
[14] M. Ferrari, O. Gutiérrez & E. Costa-Rama, “Batch injection electroanalysis with stainless-steel pins as electrodesin single and multiplexed”, Sensors and Actuators, Vol. 253, pp. 1207–1213, 2017.
[15] F. Shahriari & F. Ashrafizadeh, “The effect of the growth mode of the pre-diffused layers on the microstructure of aluminide coatings modified by titanium or silicon for gas turbine hot-section applicationsTransactions of Materials and Heat Treatment”, Department of Materials Engineering, Isfahan University of Technology, 28 February 2012.
[16] P. Marashi, S. Kaviani, H. Sarpoolaky & A. Zolfaghari, “Fundamentals Applications Of Electron Microscope and New Analyssis Methodsˮ, Iran University of Science and Technology, Third Edition, 1391.
[17] S. Bose, “High Temperature Coatingsˮ, Elsevier Science & Technology Books, Butterworth-Heinemann, 2007.
[18] J. L. Trinstancho-Reyes, M. Sanchez-Carrillo & R. Sandoval-Jabalera, “Electrochemical Impedance Spectroscopy Investigation of Alloy Inconel 718 in Molten Salts at High Temperature”, International Journal of Electrochimical science, Vol. 6, pp. 419-431, 2011.
[19] N. Birks, G. H. Meier & F. S. Pettit, “Introduction to the High Temperature Oxidation of Metals”, 2nd Edition, Cambridge University Press, 2006.
[20] M. Salehi Doolabi, B. Ghasemi, S. K. Sadrnezhaad, A. Habibollahzadeh & K. Jafarzadeh, “Hot corrosion behavior and near-surface microstructure of a “low-temperature high-activity Cr-aluminide, coating on inconel 738LC exposed to Na2SO4, Na2SO4+V2O5 and Na2SO4+V2O5+NaCl at 900°C”, Corrosion Science, Vol. 128, pp. 42-53, 2017.
[21] D. John Young, “High Temperature Oxidation and Corrosion of Metals”, Elsevier Corrosion Series, 1st Edition, 2008.
[22] M. K .Kianicova, J. Kafrik & J. Trnik, “Degradation of Aluminide Coatings Deposited on Nickel Superalloys”, Procedia Engineering, Vol. 136, pp. 346-352, 2016.
_||_