بررسی تاثیر نوع احیا کننده بر رفتار سنتز و ریزساختار آلیاژ Ni-Cr-Mo تولید شده با روش سنتز احتراقی به کمک امواج مایکروویو
محورهای موضوعی : سنتز موادمصطفی طهری 1 , جلیل وحدتی خاکی 2 , مصطفی میرجلیلی 3
1 - دانشگاه فردوسی مشهد
2 - دانشگاه فردوسی مشهد
3 - دانشگاه فردوسی مشهد
کلید واژه: مایکروویو, سنتز خود احتراقی, سوپرآلیاژ, Ni-Cr-Mo, آلومینو-سیلیکوترمی,
چکیده مقاله :
در این پژوهش اثر نوع احیا کننده بر رفتار سنتز و ریزساختار آلیاژ Ni-Cr-Mo که با روش سنتزخوداحتراقی خودپیشرونده به کمک امواج مایکروویو تهیه شده است مورد بررسی قرار گرفت. بدین منظور از NiO، MoO3 و Cr2O3 به عنوان پیشماده و نسبتهای مختلف از آلومینیم به سیلیسیم به عنوان احیاکننده استفاده شد. نتایج نشان داد هنگامی که سیلیسیم به تنهایی به عنوان عامل احیا کننده در مخلوطهای پودری قرار دارد، به دلیل دمای ذوب بالا وارد واکنش سنتز نمیشود و نمونههای سیلیکوترمی علیرغم داشتن دمای آدیاباتیک بالاتر از معیار مرزانف، سنتز نشدند. حداکثر میزان بازیابی عناصر نیکل و مولیبدن در نمونه Al50 است که به ترتیب برابر92% و 96% است. اما بازدهی بازیابی کروم در این نمونه در حدود 36% است. استفاده از آلومینیم اضافی به مقدار 1/1 و 2/1 برابر مقدار استوکیومتری در نمونههای Al50ex1.1 و Al50ex1.2 باعث شده میزان بازدهی کروم در این نمونه 25% رشد داشته باشد و به 45% برسد. وجود سیلیسیم باقیمانده در محصولات باعث تشکیل فاز Mo2Ni3Si در محصولات به صورت یک ساختار یوتکتیکی شده است. نتایج نشان داد استفاده از آلومینیم اضافی باعث افزایش مقدار سیلیسیم و در نتیجه افزایش مقدار ترکیب بینفلزی Mo2Ni3Si در محصولات نهایی شده است، بطوریکه در نمونه Al50ex1.2 فاز پرویوتکتیک Mo2Ni3Si با مورفولوژی گلبرگی شکل تشکیل شده است. علیرغم اینکه در نمونه Al100 به دلیل عدم وجود سیلیسیم ترکیبات بینفلزی مانند Mo2Ni3Si تشکیل نشده است، اما جدابش بسیار شدید مولیبدن و تجمع آن در مرز دندریتها منجر به تشکیل یک شبکه شبه دوفازی در این نمونه شده است.
This research investigated the effect of reducing agent type on the synthesis behavior and microstructure of Ni-Cr-Mo alloy, which was synthesized by microwave-assisted self-propagation high-temperature. For this purpose, powder mixtures with the same amount of NiO, MoO3, and Cr2O3 as precursors and different ratios of aluminum to silicon as reductants were prepared. The mixtures were homogenized, compacted to a 20 mm diameter disk, and synthesized by a microwave oven. Results show that although the adiabatic temperature in the silico-thermic sample exceeded the merzhanov criteria, the synthesizing did not occur due to Si high-temperature melting point. The maximum recovery efficiency of Ni and Mo was observed in the Al50 with 92% and 96%, respectively. But, the recovery efficiency of Cr in this sample was 36%, which is very low. Using excess Al in 1.1 and 1.2 times more than the stoichiometric ratio in the Al50ex1.1 and Al50ex1.2 leads to the recovery efficiency of Cr rising 25% and reaching 45%. The presence of residual Si in the produced alloys caused to formation Mo2Ni3Si phase, which is a Mo and Si reach the compound. Microstructural investigation shows residual Si content, and Mo2Ni3Si phase percent were increased by adding excess Al in the initial mixtures. Also, the Mo2Ni3Si proeutectic phase has petaloid morphology. Although the Mo2Ni3Si phase is not formed in the Al100 sample, the severe segregation of Mo led to a continuous network of semi-dual phases in the dendrite boundary.
- مراجع
[1] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی و ف. نعیمی، "بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوششهای MCrAlY اعمال شده به روش HVOF"، فرایندهای نوین در مهندسی مواد، دوره 10، شماره 3، صفحه 80-67، 1395.
[2] ر. سحرخیز، ض. والفی، م. میرجانی و س. تقیرمضانی، "مقایسه ریزساختار و مقاومت به اکسیداسیون دما بالای پوششهای NiCrAlY ایجاد شده به روش پاشش پلاسمایی اتمسفری (APS) و پاشش پلاسمایی با غلاف جامد محافظ (SSPS)"، فرایندهای نوین در مهندسی مواد، دوره 15، شماره 2، صفحه 82-65، 1400
[3] A. Mishra, "Corrosion Study of Base Material and Welds of a Ni–Cr–Mo–W Alloy", Acta Metall. Sin. English Lett. vol. 30, no. 4, pp. 326–332, Apr. 2017.
[4] J. R. Hayes, J. J. Gray, A. W. Szmodis & C. A. Orme, "Inhibiting Effects of Nitrates on the Passive Film Breakdown of Alloy 22 in Chloride Environment", Corrosion, vol. 62, pp. 491-499, 2006.
[5] A. K. Mishra & D. W. Shoesmith, "Effect of Alloying Elements on Crevice Corrosion Inhibition of Nickel-Chromium-MolybdenumTungsten Alloys Under Aggressive Conditions: An Electrochemical Study", Corrosion, vol. 70, pp. 721-731, 2014.
[6] P. Clook, "NACE International", Denver, Colorado, 1996, NACE-96412.
[7] J. H. Lee, S. K. Ko & C. W. Won, "Combustion characteristics of TiO2/Al/C system", Mater. Res. Bull, vol. 36, no. 7–8, pp. 1157–1167, 2001.
[8] G. Liu, J. Li & K. Chen, "Combustion synthesis of refractory and hard materials: A review", Int. J. Refract. Met. Hard Mater, vol. 39, pp. 90–102, 2013.
[9] F. Kaya, M. Yetiş, G. İ. Selimoğlu & B. Derin, "Influence of Co content on microstructure and hardness of AlCoxCrFeNi (0 ≤ x ≤ 1) high-entropy alloys produced by self-propagating high-temperature synthesis", Eng. Sci. Technol. an Int. J, vol. 27, 2022.
[10] J. Feizabadi, J. Vahdati Khaki, M. Haddad Sabzevar, M. Sharifitabar & S. Aliakbari Sani, "Fabrication of in situ Al2O3 reinforced nanostructure 304 stainless steel matrix composite by self-propagating high temperature synthesis process", Mater. Des, vol. 84, pp. 325–330, Nov. 2015.
[11] P. Zhang, T. Xia, G. Zhang & L. Yan, "Study on preparation of Ti powder by self-propagating high-temperature synthesis (SHS) with magnesiothermit reductive process", Mater. Sci. Forum, vol. 575–578, pp. 1086–1092, 2008.
[12] A. Chakraborti, N. Vast & Y. Le Godec, "Synthesis of boron carbide from its elements at high pressures and high temperatures", Solid State Sci, vol. 104, p. 106265, 2020.
[13] M. Sharifitabar, J. Vahdati Khaki & M. Haddad Sabzevar, "Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2-Al-C system", Int. J. Refract. Met. Hard Mater, vol. 47, pp. 93–101, 2014.
[14] B. Paul, J. Kishor, A. Chatterjee, S. Majumdar, V. Kain, G.K. Dey, "A study on feasibility of preparation of W-Cr-Si alloys by silicothermic co-reduction and characterization of as cast co-reduced alloy", J. Alloys Compd, vol. 701, pp. 864e-869, 2017.
[15] H-Y. Zhu, R. Gao, W-T. Jin, L-W. Qiu & Z-L. Xue, "Reduction characteristics of molybdenum trioxide with aluminum and silicon", Rare Met, vol. 37, no. 7, pp. 621–624, 2018.
[16] H-Y. Wang, G-H. Zhang & K-C. Chou, "Preparation of Low-Carbon and Low-Sulfur Fe-Cr-Ni-Si Alloy by Using CaSO4-Containing Stainless Steel Pickling Sludge", Metall. Mater. Trans. B, vol. 51, no. 5, pp. 2057–2067, 2020.
[17] D. R. Gaskell, "Introduction to the Thermodynamics of Materials", 4th ed. New York: Taylor & Francis, 2003.
[18] M. Tahari, J. Vahdati Khaki & M. Mirjalili, "Microwave-Assisted Combustion Synthesis of Ni–Cr–Mo Superalloy Using Mixed Oxides: Mechanism and Thermodynamics Aspects", Metall. Mater. Trans. A, 2023, doi: 10.1007/s11661-023-07038-4.
[19] S. C. Kung, "Gibbs energy of formation of nickel chromite", Metall. Trans. B, vol. 22, no. 5, pp. 673–675, 1991.
[20] H. Edris, D. G. Mccartney & A. J. Sturgeon, "Microstructural characterization of high velocity oxy-fuel sprayed coatings of Inconel 625", J. Mater. Sci, vol. 32, no. 4, pp. 863–872, 1997.
[21] X. D. Cheng, J. Min, Z. Q. Zhu & W. P. Ye, "Preparation of high emissivity NiCr 2O 4 powders with a spinel structure by spray drying", Int. J. Miner. Metall. Mater, vol. 19, no. 2, pp. 173–178, 2012.
[22] E. B. Rudnyi, E. A. Kaibicheva, L. N. Sidorov, M. T. Varshavskii & A. N. Men, "(Ion + molecule) equilibrium technique applied to the determination of the activities of Cr2O3 and NiO. Standard molar Gibbs energy of formation of NiCr2O4", J. Chem. Thermodyn, vol. 22, no. 7, pp. 623–632, 1990.
[23] G. Gunduz-Meric, S. Kaytakoglu & L. Degirmenci, "Catalytic performance of silica covered bimetallic nickel-iron encapsulated core-shell microspheres for hydrogen production", Int. J. Hydrogen Energy, vol. 45, no. 60, pp. 34547–34556, Dec. 2020.
[24] O. V. Chernyshova, D. K. Kanagatov & D. V. Drobot, "Production of nickel–cobalt concentrate in rhenium-containing refractory alloy processing", Russ. J. Non-Ferrous Met, vol. 58, no. 1, pp. 55–60, Jan. 2017.
[25] A. Ghasemi & M. Pouranvari, "Intermetallic phase formation during brazing of a nickel alloy using a Ni–Cr–Si–Fe–B quinary filler alloy", Sci. Technol. Weld. Join, vol. 24, no. 4, pp. 342–351, May 2019.
[26] Y. W. Xu & H. M. Wang, "Oxidation behavior of ␥ / Mo 2 Ni 3 Si ternary metal silicide alloy", J. Alloys Compd, vol. 457, pp. 239–243, 2008.
[27] S. D. K. John N. DuPont, John & C. Lippold, "Welding metallurgy and weldability of nickel-base alloys", 1st ed. New Jersey: John wiley & sons, 2009.
[28] P. Crook, "Development of a new Ni-Cr-Mo alloy", in CORROSION 96, 1996.
[29] R. Awasthi et al, "Corrosion Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding", Metall. Mater. Trans. A, vol. 48, no. 6, pp. 2915–2926, Jun. 2017.
[30] P. Zhang, M. Li, H. Yan, J. Chen, Z. Yu & X. Ye, "Microstructure evolution of Ni-Mo-Fe-Si quaternary metal silicide alloy composite coatings by laser cladding on pure Ni", J. Alloys Compd, vol. 785, pp. 984–1000, May 2019.
[31] J. Liu, J. Zhang, L. Deng & G. Hao, "Microstructure and corrosion behaviour of laser-cladded γ-Ni/Mo 2 Ni 3 Si alloy coating", Surf. Eng, vol. 35, no. 1, pp. 59–65, Jan. 2019.
[32] Y. W. Xu & H. M. Wang, "Room-temperature dry sliding wear behavior of γ-Ni/Mo2Ni3Si metal silicide ‘in situ’ composites", J. Alloys Compd, vol. 440, no. 1–2, pp. 101–107, Aug. 2007.
[33] Y. W. Xu & H. M. Wang, "Microstructure and wear properties of laser melted γ-Ni/Mo2Ni3Si metal silicide ‘in situ’ composite", Mater. Lett, vol. 61, no. 2, pp. 412–416, Jan. 2007.
[34] U. Kumar Mohanty & H. Sarangi, "Solidification of Metals and Alloys", in Casting Processes and Modelling of Metallic Materials, IntechOpen, 2021, pp. 1–22.
[35] M. J. Perricone & J. N. Dupont, "Effect of composition on the solidification behavior of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys", Metall. Mater. Trans. A, vol. 37, no. 4, pp. 1267–1280, Apr. 2006.
[36] S. A. Cefalu & M. J. M. Krane, "Comparison of predictions of microsegregation in the Ni–Cr–Mo system to experimental measurements", Mater. Sci. Eng. A, vol. 454–455, pp. 371–378, Apr. 2007.
[37] K. Dyal Ukabhai, I. A. Mwamba & L. A. Cornish, "Studies of Co-Fe-Pd Alloys in the As-Cast Condition & After Annealing at 1000 and 650 °C", J. Phase Equilibria Diffus, vol. 41, no. 4, pp. 567–585, Aug. 2020.
6- پینوشت
[1] Self-Propagation High Temperature Synthesis
[2] Kaya et al
[3] Feizabadi et al
[4] Hall et al
[5] Dautzenberg
[6] Zhu & Paul
[7] Face Centered Cubic
[8] Hexagonal Laves Structure
[9] Petaloid
[10] Xu et al
[11] Perricone
[12] Cefalu et al
[13] Dyal et al