بررسی فعالیت کاتالیزوری نانوذرات اکسید سریم بر تجزیه گرمایی آمونیوم پرکلرات
محورهای موضوعی : عملیات حرارتیاسماعیل ایومن 1 * , شهرداد ارسطو 2 , مرجان تحریری 3 , مژگان تحریری 4
1 - کارشناس ارشد زنجیره آتش/صنایع دفاع
2 - دانشکده علوم زیست شناسی، مجتمع میکروبیولوژی دانشگاه آزاد اسلامی واحد قم، ایران
3 - دانشکده علوم کاربردی-گروه آموزشی شیمی دانشگاه صنعتی مالک اشتر اصفهان، اصفهان، ایران
4 - دانشکده علوم پایه-شیمی دانشگاه آزاد اسلامی، واحد علوم تحقیقات تهران، تهران، ایران
کلید واژه: تجزیه گرمایی, نانوذرات CeO2, فعالیت کاتالیزوری, آمونیوم پرکلرات,
چکیده مقاله :
چکیده در این تحقیق، تجزیه گرمایی نانوکامپوزیتهای حاوی آمونیوم پرکلرات و نانوذرات CeO2 تجاری بررسی شده است. مشخصات نانوذرات CeO2 با روشهای مشخصهیابی XRD و TEM بررسی شده است. آنالیز TEM نشان میدهد که اندازه بیشتر نانوذرات CeO2 در محدوده nm30-10 است. فعالیت کاتالیزوری نانوذرات CeO2 بر تجزیه گرمایی آمونیوم پرکلرات با آنالیزهای گرمایی DSC و TGA بررسی شده است. نتایج دلالت بر این دارند که فعالیت کاتالیزوری نانوذرات CeO2 قابل توجه است و دمای تجزیه گرمایی آمونیوم پرکلرات را کاهش و گرمایی حاصل از تجزیه گرمایی آمونیوم پرکلرات را افزایش میدهند. به طوری که با اضافه کردن 2% وزنی از نانوذرات CeO2 دمای تجزیه گرمایی آمونیوم پرکلرات از C°89/423 به C°89/330 کاهش پیدا میکند. همچنین، با اضافه کردن 2% وزنی از نانوذرات CeO2 به آمونیوم پرکلرات، گرمای حاصل از تجزیه از J/g835 به J/g22/1517 افزایش پیدا میکند. واژههای کلیدی: نانوذرات CeO2، فعالیت کاتالیزوری، آمونیوم پرکلرات، تجزیه گرمایی.
Study catalytic effect of CeO2 nanoparticle on thermal decomposition of ammonium perchlorate ABSTRACT This work studied on the thermal decomposition of ammonium perchlorate activated by addition of commercial CeO2 nanoparticles. CeO2 nanoparticles were characterized by X-ray diffraction (XRD) and transition electron microscope (TEM). The TEM study revealed that the majority of CeO2 particles are of 10–30 nm in size. The catalytic activities of CeO2 nanoparticles on the thermal decomposition of ammonium perchlorate were investigated by thermogravimetric analysis (TGA) coupled with differential scanning calorimeter (DSC). The results imply that the catalytic performance of CeO2 nanoparticles is significant and the decrease in the thermal decomposition temperature and the increase in the heat decomposition AP. So that, adding 2 Wt.% of CeO2 nanoparticles to AP decreases the thermal decomposition temperature from 423.89 to 330.89 °C. Also, Adding 2 Wt.% of CeO2 nanoparticles to AP increases the heat decomposition from 835 to 1517.22 J/g. Keywords: CeO2 Nanoparticles, Catalytic Activity, Ammonium Perchlorate, Thermal Decomposition.
[1] L. J. Chen, G. S. Li & L. P. Li, “CuO Nanocrystals in Thermal Decomposition of Ammonium Perchorate Stabilization, Structural Characterization and Catalytic Activities”, Thermal Analysis and Calorimetry, Vol. 2, pp. 581-587, 2008.
[2] W. Jun, H. Shanshan, L. Zhanshuang, J. Xiaoyan, Z. Milin & J. Zhaohua, “Self-Assembled CuO Nanoarchitectures and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate”, Colloid Polym Sci, Vol. 20, pp. 853-858, 2009.
[3] John & J. Christopher, Chemistry of Pyrotechnics Basic Principles and Theory, 2rd ed, pp. 72, CRC Press, 2011.
[4] N. B. Singh & A. K. Ojha, “Co-Precipitation of a Mixture of CuO and Cr203 Through NaN03-KN03 Eutectic Mixture and its Catalytic Activity”, Indian Journal of chemistry, Vol. 6, pp. 2475-2479, 2002.
[5] E. L. Sherbiny, I. M. Salih & E. Reicha, “Green Synthesis of Densely Dispersed and Stable Silver Nanoparticles Using Myrrh Extract and Evaluation of Their Antibacterial Activity”, Journal of Nanostructure in Chemistry, Vol. 8, pp. 1-7, 2013.
[6] H. Maddah, M. Rezazadeh, M. Maghsoudi & S. NasiriKokhan, “The Effect of Silver and Aluminum Oxide Nanoparticles on Thermophysical Properties of Nanofluids”, Journal of Nanostructure in Chemistry, Vol. 8, pp. 1-6, 2013.
[7] D. Hongzhen, L. Xiangyang, L. Guanpeng & X. Lei, “Synthesis of Co Nanoparticles and Their Catalytic Effect on the Decomposition of Ammonium Perchlorate”, Chin J Chem Eng, Vol. 16, pp. 325–328, 2008.
[8] S. J. Satyawati, R. P. Prajakta & N. V. Krishnamurthy, “Thermal Decomposition of Ammonium Perchlorate in the Presence of Nano-sized Ferric Oxide”, Defense Science Journal, Vol. 58, pp. 721–727, 2008.
[9] H. Duan, X. Lin, G. Liu, L. Xu & F. Li, “Synthesis of Ni Nanoparticles and Their Catalytic Effect on the Decomposition of Ammonium Perchlorate”, Materials Processing Technology, Vol. 208, pp. 494–498, 2008.
[10] س. حسینی، ا. ایومن، ا. قوی و ن. سلیمانی، "سنتزنانوذرات اکسیدمس به روش خردایشی و بررسی فعالیت کاتالیزوری آنها برتجزیه گرمایی آمونیوم پرکلرات"، سومین همایش سراسری کاربردهای دفاعی علوم نانو، تهران، دانشگاه جامع امام حسین (ع)، آذر 1392.
[11] س. حسینی، ع. زارعی، ا. قوی و ا. ایومن، "بررسی اثراندازه ذره و مرفولوژی نانواکسیدآهن بررفتاراحتراقی آمونیوم پرکلرات"، سومین همایش سراسری کاربردهای دفاعی علوم نانو، تهران، دانشگاه جامع امام حسین (ع)، آذر 1392.
[12] S. G. Hosseini, A. Ghavi, S. H. M. Shariaty, F. Agend & E. Auman, “Synthesis of Fe2O3 Nanoparticles by Planetary Ball Mill Method and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate”, Conference on Nanostructures (ICNS5), Kish Island, Iran, 2014.
[13] E. Alizadeh Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian Kalandaragh & R. Rahimi, “Investigation of the Catalytic Activity of Nano-Sized CuO, Co3O4 and CuCo2O4 Powders on Thermal Decomposition of Ammonium Perchlorate”, Powder Technology, Vol. 217, pp. 330-339, 2011.
[14] C. Lijuan, L. Liping & L. Guangshe, “Synthesis of CuO Nanorods and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate”, Alloys and Compounds, Vol, 31, pp. 532-536, 2007.
[15] L. J. Chen, G. S. Li & L. P. Li, “CuO Nanocrystals in Thermal Decomposition of Ammonium Perchorate Stabilization, Structural Characterization and Catalytic Activities”, Thermal Analysis and Calorimetry, Vol. 2, pp. 581-587, 2008.
[16] W. Jun, H. Shanshan, L. Zhanshuang, J. Xiaoyan, Z. Milin & J. Zhaohua, “Self-Assembled CuO Nanoarchitectures and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate”, Colloid Polym Sci, Vol. 20, pp. 853-858, 2009.
[17] P. X. Huang, F. Wu, B. L. Zhu, G. R. Li, Y. L. Wang, X. P. Gao, H. Y. Zhu & T. Y. Yan, “Physiochemical and Electrical Properties of Praseodymium Oxides”, J Phys Chem B, Vol. 110, pp. 1614–20, 2006.
[18] B. A. Panda, G. Glaspell & S. M. El-Shall, “Microwave Synthesis and Optical Properties of Uniform Nanorods and Nanoplates of Rare Earth Oxides”, J Phys Chem C, Vol. 111, pp. 1861-1864, 2007.
[19] S. Singh, P. Srivastava, I. P. S. Kapoor & G. Singh, “Preparation, Characterization, and Catalytic Activity of Rare Earth Metal Oxide Nanoparticles”, J Therm Anal Calorim, Vol 111, pp. 1073-1082, 2013.
[20] T. Liu, L. Wang, P. Yang & B. Hu, “Preparation of Nanometer CuFe2O4 by Autocombustion and its Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate”, Mater Lett, Vol. 62, pp. 4056–4058, 2008.
[21] ا. ایومن، ه. احمدوند، ا. قوی و س. حسینی، "مروری بر کاربرد نانو کاتالیست های اکسید فلزی بر تجزیه حرارتی آمونیوم پرکلرات"، نشریه تحقیق و توسعه مواد پرانرژی، سال نهم شماره 3، ص. 3-14، پاییز 1392.
[22] V. V. Boldyrev, “Review Thermal Decomposition of Ammonium Perchlorate”, ThermochimicaActa, Vol. 443, pp. 1–36, 2006.
[23] T. Seiyama, M. Egashira & M. Iwamoto, “Some Theoretical Problem of Catalysis”, Tokyo: University of Tokyo Press, 1973.
_||_