ایجاد پوشش کامپوزیتی YSZ/Al بر روی سوپرآلیاژ اینکولوی 825 به روش رسوبدهی الکتروفورتیک
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمجتبی احمدی 1 , حسین آقاجانی 2
1 - گروه مهندسی مواد ، دانشگاه تبریز، تبریز، ایران
2 - عضو هیات علمی/ دانشگاه تبریز
کلید واژه: آلومینیوم, پتانسیل زتا, رسوبدهی الکتروفورتیک, YSZ,
چکیده مقاله :
در این پژوهش، شرایط ایجاد پوشش کامپوزیتی YSZ/Al بر روی سوپرآلیاژ اینکولوی 825 به روش رسوبدهی الکتروفورتیک مورد مطالعه قرار گرفته است. پایداری سوسپانسیون ذرات YSZ و Al در استون و در حضور پراکندهساز ید با اندازهگیری اندازه ذرات موجود در سوسپانسیون و پتانسیل زتا مطالعه شد. بر اساس نتایج به دست آمده، سوسپانسیون حاوی g/l 2/1 ید به منظور رسوبدهی الکتروفورتیک همزمان دو پودر انتخاب شد. میانگین اندازه ذرات YSZ و Al در این سوپانسیون به ترتیب برابر 6/111 نانومتر و 658/2 میکرومتر و مقدار پتانسیل زتا برای دو پودر به ترتیب برابر 2/50 و 16 میلیولت اندازهگیری شد. به منظور بررسی تاثیر ولتاژ اعمالی و زمان بهینه رسوبدهی بر روی کیفیت رسوب تشکیل شده، رسوبدهی در ولتاژها و زمانهای رسوبدهی مختلف انجام شد. نتایج نشان داد که رسوب تشکیل شده در ولتاژ 6 ولت و زمان رسوبدهی 3 دقیقه دارای سطح یکنواخت و عاری از ترک بود. تصویر به دست آمده از آنالیز SEM نشان داد که این پوشش دارای ضخامت 63/19 میکرومتر است.
Abstract In this research, Fabrication of YSZ/Al composite coating on Incoloy 825 superalloy using electrophoretic deposition has been investigated. Dispersion of YSZ and Al particles suspension in acetone in presence of iodine, as dispersant, was studied by particle size and zeta potential measurement. According to the results, the suspension containing 1.2 g/l iodine has been chosen for electrophoretic co-deposition of YSZ and Al particles. Mean diameter of YSZ and Al particles in this suspension was measured 111.6 nm and 2.658 μm and zeta potential value of these particles was measured 50.2 and 16 mV, respectively. In order to investigate the influence of applied voltage and deposition time on quality of formed deposit, electrophoretic co-deposition has been carried out at different voltages and deposition times. Results revealed that the deposit formed at voltage of 6 V and deposition time of 3 min had uniform and crack-free surface. SEM image showed that this coating had thickness of 19.63 μm.
[1] A. P. Mouritz, “Introduction to Aerospace Materialsˮ, Woodhead Publishing, USA, 2012.
[2] X. Q. Cao, R. Vassen & D. Stoever, “Ceramic materials for thermal barrier coatingsˮ, Journal of the European Ceramic Society, Vol. 24, No. 1, pp. 1-10, 2004.
[3] S. M. Meier, D. K. Gupta & K. D. Sheffler, “Ceramic thermal barrier coatings for commercial gas turbine enginesˮ, Journal of Management, Vol. 43, No. 3, pp. 50-53, 1991.
[4] R. A. Miller, “Thermal barrier coatings for aircraft engines: history and directionsˮ, Journal of Thermal Spray Technology, Vol. 6, No. 1, pp. 35-42, 1997.
[5] U. B. Pal & S. C. Singhal, “Electrochemical vapor deposition of yttria-stabilized zirconiaˮ, Journal of Electrochemical Society, Vol. 137, pp. 2937-2941, 1990.
[6] G. Z. Cao, H. W. Brinkman, J. Meijerink, K. J. De Vries & A. J. Burggraaf, “Pore narrowing and formation of ultrathin yttria-stabilized zirconia layers in ceramic membranes by chemical vapor/electrochemical vapor depositionˮ, Journal of American Ceramic Society, Vol. 76, pp. 2201-2208, 1993.
[7] O. Unal, T. E. Mitchell & A. H. Heuer, “Microstructures of Y2O3-stabilized ZrO2 electron beam physical vapor deposition coating on Ni-based superalloysˮ, Journal of American Ceramic Society, Vol. 77, pp. 984-992, 1994.
[8] C. H. Chen, K. Nord-Varhaug & J. Schoonman, “Coating of yttria-stabilized zirconia (YSZ) thin films on Gadolinia-doped ceria (GCO) by the electrostatic spray deposition (ESD) techniqueˮ, Journal of Materials Synthesis and Processing, Vol. 4, pp. 189-194, 1996.
[9] K. Mehta, R. Xu & A. V. Virkar, “Two-layer fuel cell electrolyte structure by sol-gel processingˮ, Journal of Sol-gel Science and Technology, Vol. 11, pp. 203-207, 1998.
[10] ح. ملکی قلعه، ح. آقاجانی، م. محمودی، م. برجسته و ح. زمانی، "بررسی اتلاف حرارتی پوشش سد حرارتی نانوساختار ساخته شده به روش EPD"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 8، شماره 2، ص. 104-99، 1393.
[11] L. Bersa, & L. Meilin, “A review on Fundamentals and Applications of Electrophoretic Deposition (EPD)ˮ, Progress in Materials Science, Vol. 52, No. 1, pp. 1-61, 2007.
[12] A. R. Boccaccini & I. Zhitomirsky, “Application of electrophoretic and electrolytic deposition techniques in ceramics processingˮ, Current Opinion in Solid State and Materials Science, Vol. 6, No. 3, pp. 251-260, 2002.
[13] ع. گلشنی عجب شیر و ح. آقاجانی، "رسوب دهی الکتروفورتیک (EPD) نانوذرات کاربید سیلیسیم (SiC)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال ،10 شماره 3، ص. 111-103، 1395.
[14] K. K. Chew, S. H. Sharif Zein & A. L. Ahmad, “The corrosion scenario in human body: Stainless steel 316L orthopaedic implantsˮ, Natural Science, Vol. 4, No. 3, pp. 184-188, 2012.
[15] De Riccardis & M. Federica, “Ceramic Coatings Obtained by Electrophoretic Deposition: Fundamentals, Models, Post-Deposition Processes and Applicationsˮ, INTECH Open Access Publisher, 2012.
[16] Z. Wang, P. Xiao & J. Shemilt, “Fabrication of composite coatings using a combination of electrochemical methods and reaction bonding processˮ, Journal of the European Ceramic Society, Vol. 20, No, 10, pp. 1469-1473, 2000.
[17] D. Das & R. N. Basu, “Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substratesˮ, Materials Research Bulletin, Vol. 48, No. 9, pp. 3254-3261, 2013.
[18] K. T. Sullivan, M. A. Worsley, J. D. Kuntz & A. E. Gash, “Electrophoretic deposition of binary energetic compositesˮ, Combustion and Flame, Vol. 159, No. 6, pp. 2210-2218, 2012.
[19] F. Chen & M. Liu, “Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) processˮ, Journal of the European Ceramic Society, Vol. 21, pp. 127-134, 2001.
_||_