اثر افزودن سیلیسیم بر رفتار مکانیکی و خوردگی پوشش کاربید تانتالم تولید شده به روش کندوپاش مگنترونی
محورهای موضوعی : خوردگی و حفاظت موادعلیرضا حسینی 1 * , میناسادات امامیان 2 , مصطفی علیشاهی 3
1 - عضو هیئت علمی/گروه مهندسی مواد و پلیمر، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری
2 - گروه مهندسی مواد و پلیمر، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران
3 - دانشگاه حکیم سبزواری
کلید واژه: پوشش, سختی, خوردگی, کندوپاش مگنترونی, تانتالم,
چکیده مقاله :
در این پژوهش پوششهای Ta، TaC و TaSiC به روش کندوپاش مگنترونی غیرواکنشی لایهنشانی شده و خواص ساختاری، ریزساختاری، مکانیکی و خوردگی بررسی شده است. نتایج XRD نشان دادند که پوشش Ta ساختار کریستالی تانتالم α، پوشش TaC ساختار کریستالی TaC0.6 و پوشش TaSiC ماهیت شبهآمورف از خود نشان دادند. در این ارتباط، پوشش Ta ریزساختاری ستونی با زبری بالا و تنش پسماند کششی از خود نشان داد، در حالیکه افزودن کربن و سیلیسیم به پوشش سبب فشردهشدن ریزساختار، کاهش زبری سطح و تغییر ماهیت تنش پسماند از کششی به فشاری شد. همچنین نتایج آزمون نانوفرورونده نشان داد که افزودن کربن به پوشش تانتالم باعث افزایش حدود چهار برابری سختی پوشش میشود، ولی افزودن سیلیسیم به پوشش TaC سختی پوشش را اندکی کاهش میدهد. مطالعات خوردگی نشان داد همه پوششها نسبت به زیرلایه ST37 ماهیتی کاتدی از خود نشان دادند که میتواند منجر به خوردگی گالوانیک شود. علاوه بر این نتایج خوردگی نشان داد که پوشش Ta بازده حفاظتی به میزان ٪9/78 برای فولاد ساده کربنی را به همراه دارد و افزودن کربن و سیلیسیم به پوشش سبب افزایش بازده حفاظتی به مقادیر ٪1/90 و ٪5/95 به ترتیب برای پوششهای TaC و TaSiC میشود .در این ارتباط نقش این عناصر در فشردگی پوشش و کاهش مسیرهایی که محلول خورنده میتواند به زیرلایه برسد، کلیدی تشخیص داده شد.
In this study, Ta, TaC and TaSiC coatings have been deposited by a non-reactive magnetron sputtering method, and their structural, microstructural, mechanical, and corrosion properties have been investigated. XRD results revealed the presence of α-Ta and TaC0.6 phase structures in the Ta and TaC coatings, respectively. However, the TaSiC coating showed a quasi-amorphous structure. Additionally, the Ta coating showed a columnar microstructure with rough topography and tensile residual stress, while the addition of carbon and silicon resulted in the compactness and smoothness and domination compressive residual stress in the TaC and TaSiC coatings. Nanoindentation results showed that the addition of carbon to the Ta coating increased the hardness by four times, however the addition of silicon to the TaC coating had an adverse effect on the hardness of the coating. The corrosion studies revealed that the coatings have a cathodic nature with respect to the ST37 substrate, making the samples susceptible to galvanic corrosion. Furthermore, the addition of carbon and silicon was found to improve the corrosion resistance of the coatings by increasing the coating compactness and decreasing the density of open porosities.
- مراجع
[۱] علیشاهی، م، محبوبی، ف، و موسوی خویی، س. (۱۳۹۷). بررسی رفتار خوردگی پوشش تانتالم لایه نشانی شده به روش کندوپاش مگنترونی. فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی)، دوره ۱۲، شماره ۲، (پیاپی ۴۵)، صفحه 151-139.
[۲] علیشاهی، م، بینا، م، و منیرواقفی، س. (۱۳۹۲). تشکیل و بررسی اثر درصد CNT بر رفتار خوردگی پوشش الکترولس کامپوزیتی Ni-P-CNT. فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی)، دوره ۷، شماره ۳، (پیاپی ۲۶)، صفحه 38-31.
[۳] سلیمانی گیلاکجانی، ر، محبوبی، ف، و علیشاهی، م. (۱۳۹۳). بررسی رفتار خوردگی و تریبولوژیکی پوشش الکترولس نانوکامپوزیتی Ni-P-SiC اعمال شده روی سطح آلومینیم Al6061. فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی)، دوره 8، شماره 2، (پیاپی ۲29)، صفحه 121-113.
[4] D. E. J. Talbot & J. D. R. Talbot, "Corrosion Science and Technology", Second Edition, CRC Press, 2007.
[5] P. J. Kelly & R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications", Vacuum, vol. 56, pp. 159-172, 2000.
[6] C. Petrogalli, L. Montesano, M. Gelfi, G. M. La Vecchia & L. Solazzi, "Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defects", Surface and Coatings Technology, vol. 258, pp. 878-885, 2014.
[7] S. S. Firouzabadi, K. Dehghani, M. Naderi & F. Mahboubi, "Numerical investigation of sputtering power effect on nano-tribological properties of tantalum-nitride film using molecular dynamics simulation", Applied Surface Science, vol. 367, pp. 197-204, 2016.
[8] R. Gago, M. Vinnichenko, R. Hübner & A. Redondo-Cubero, "Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition", Journal of Alloys and Compounds, vol. 672, pp. 529-535, 2016.
[9] H. Gao, Y. Li, C. Li, F. Ma, Z. Song & K. Xu, "Tuning the electronic properties in TaNx/Ag nanocomposite thin films", RSC Advances, vol. 6, pp. 30998-31004, 2016.
[10] N. Srinatha, Y. S. No, V. B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A. M. Umarji & W. K. Choi, "Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films", RSC Advances, vol. 6, pp. 9779-9788, 2016.
[11] D. Zheng, J. Xiong, P. Guo, S. Wang & H. Gu, "AlN-based film buck acoustic resonator operated in shear mode for detection of carcinoembryonic antigens", RSC Advances, vol. 6, pp. 4908-4913, 2016.
[12] G. Tourillon, "Electrochemically Synthesized Co and Fe Nanowires and Nanotubes", Electrochemical and Solid-State Letters, vol. 3, pp. 20, 1999.
[13] A. I. H. Committee, "Properties and Selection: Nonferrous Alloys and Special- Purpose Materials", ASM International, 1990.
[14] L. Gladczuk, A. Patel, C. Singh Paur & M. Sosnowski, "Tantalum films for protective coatings of steel", Thin Solid Films, vol. 467, pp. 150-157, 2004.
[15] S. Lee, D. Windover, M. Audino, D. Matson & E. McClanahan, "High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation", Surface and Coatings Technology, vol. 149, pp. 62-69, 2002.
[16] H. Ren, "Ion assisted magnetron sputtering of tantalum thin film deposition and characterization", Ph.D thesis, New Jercy Institute of Technology, 2007.
[17] S. Myers, J. Lin, R. M. Souza, W. D. Sproul & J. J. Moore, "The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering", Surface and Coatings Technology, vol. 214, pp. 38-45, 2013.
[18] S. Du, M. Wen, L. Yang, P. Ren, Q. Meng, K. Zhang & W. Zheng, "Structural, hardness and toughness evolution in Si-incorporated TaC films", Ceramics International, vol. 44, pp. 9318-9325, 2018.
[19] K. Tillmann, A. Thust, A. Gerber, M. P. Weides & K. Urban, "Atomic Structure of [beta]-Tantalum Nanocrystallites", Microscopy and Microanalysis, vol. 11, pp. 534-544, 2005.
[20] M. M. Esmaeili, M. Mahmoodi & R. Imani, "Tantalum carbide coating on Ti-6Al-4V by electron beam physical vapor deposition method: Study of corrosion and biocompatibility behavior", International Journal of Applied Ceramic Technology, vol. 14, pp. 374-382, 2017.
[21] A. Poladi, H. R. Mohammadian Semnani, E. Emadoddin, F. Mahboubi & H. R. Ghomi, "Wettability and Biocompatibility of TaCx Films Deposited on AISI316L Stainless Steel: Effect of Methane Concentration", Journal of Inorganic and Organometallic Polymers and Materials, vol. pp. 2019.
[22] H. Zhao & F. Ye, "Effect of Si-incorporation on the structure, mechanical, tribological and corrosion properties of WSiN coatings", Applied Surface Science, vol. 356, pp. 958-966, 2015.
[23] D. Yang, H. Chen, Y. Ye, C. Wang, H. Zhao & D. Gong, "Doping silicon to enhance the anti-corrosion and anti-wear abilities of chromium nitride coating in seawater", Surface Topography: Metrology and Properties, vol. 6, pp. 044001, 2018.
[24] A. M. G. Tavares, B. S. Fernandes, S. A. Souza, W. W. Batista, F. G. C. Cunha, R. Landers & M. C. S. S. Macedo, "The addition of Si to the Ti–35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials", Journal of Alloys and Compounds, vol. 591, pp. 91-99, 2014.
[25] A. M. G. Tavares, W. S. Ramos, J. C. G. De Blas, E. S. N. Lopes, R. Caram, W. W. Batista & S. A. Souza, "Influence of Si addition on the microstructure and mechanical properties of Ti–35Nb alloy for applications in orthopedic implants", Journal of the Mechanical Behavior of Biomedical Materials, vol. 51, pp. 74-87, 2015.
[26] C. H. Lin & J. G. Duh, "Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5wt.% NaCl solution", Surface and Coatings Technology, vol. 204, pp. 784-787, 2009.
[27] X. Cui, G. Jin, J. Hao, J. Li & T. Guo, "The influences of Si content on biocompatibility and corrosion resistance of Zr–Si–N films", Surface and Coatings Technology, vol. 228, pp. S524-S528, 2013.
[28] J. E. Krzanowski & J. Wormwood, "Microstructure and mechanical properties of Mo–Si–C and Zr–Si–C thin films: Compositional routes for film densification and hardness enhancement", Surface and Coatings Technology, vol. 201, pp. 2942-2952, 2006.
[29] S. Y. Lee, B. Kim, S. D. Kim, G. Kim & Y. S. Hong, "Effect of Si doping on the wear properties of CrN coatings synthesized by unbalanced magnetron sputtering", Thin Solid Films, vol. 506-507, pp. 192-196, 2006.
[30] L. Wang, L. Shi, J. Chen, Z. Shi, L. Ren & Y. Wang, "Biocompatibility of Si-incorporated TiO2 film prepared by micro-arc oxidation", Materials Letters, vol. 116, pp. 35-38, 2014.
[31] P. Trivedi, P. Gupta, S. Srivastava, R. Jayaganthan, R. Chandra & P. Roy, "Characterization and in vitro biocompatibility study of Ti–Si–N nanocomposite coatings developed by using physical vapor deposition", Applied Surface Science, vol. 293, pp. 143-150, 2014.
[32] W. C. Oliver & G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[33] M. Alishahi, S. Mirzaei, P. Souček, L. Zábranský, V. Buršíková, M. Stupavská, V. Peřina, K. Balázsi, Z. Czigány & P. Vašina, "Evolution of structure and mechanical properties of hard yet fracture resistant W‐B‐C coatings with varying C/W ratio", Surface and Coatings Technology, vol. 340, pp. 103-111, 2018.
[34] J. E. Krzanowski, "Phase formation and phase separation in multiphase thin film hard coatings", Surface and Coatings Technology, vol. 188-189, pp. 376-383, 2004.
[35] H. Windischmann, "Intrinsic stress in sputter-deposited thin films", Critical Reviews in Solid State and Materials Sciences, vol. 17, pp. 547-596, 1992.
[36] G. Abadias, W. P. Leroy, S. Mahieu & D. Depla, "Influence of particle and energy flux on stress and texture development in magnetron sputtered TiN films", Journal of Physics D: Applied Physics, vol. 46, pp. 055301, 2013.
[37] F. M. D’Heurle, "Aluminum films deposited by rf sputtering", Metallurgical and Materials Transactions B, vol. 1, pp. 725-732, 1970.
[38] G. Abadias, L. E. Koutsokeras, P. Guerin & P. Patsalas, "Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles", Thin Solid Films, vol. 518, pp. 1532-1537, 2009.
[39] D. M. Mattox, "Handbook of physical vapor deposition (PVD) processing film formation, adhesion, surface preparation and contamination control", Noyes Publications, Westwood, N.J., 1998.
[40] Y. G. Shen, Y. W. Mai, D. R. McKenzie, Q. C. Zhang, W. D. McFall & W. E. McBride, "Composition, residual stress, and structural properties of thin tungsten nitride films deposited by reactive magnetron sputtering", Journal of Applied Physics, vol. 88, pp. 1380, 2000.
[41] D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert & R. Spolenak, "Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition", Thin Solid Films, vol. 548, pp. 157-161, 2013.
[42] S. Du, K. Zhang, M. Wen, Y. Qin, R. Li, H. Jin, X. Bao, P. Ren & W. Zheng, "Optimizing the tribological behavior of tantalum carbide coating for the bearing in total hip joint replacement", Vacuum, vol. 150, pp. 222-231, 2018.
[43] Y. Long, A. Javed, J. Chen, Z.-K. Chen & X. Xiong, "The effect of deposition temperature on the microstructure and mechanical properties of TaC coatings", Materials Letters, vol. 121, pp. 202-205, 2014.
[44] E. McCafferty, "Validation of corrosion rates measured by the Tafel extrapolation method", Corrosion Science, vol. 47, pp. 3202-3215, 2005.
[45] S. Pugal Mani, A. Srinivasan & N. Rajendran, "Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC)", International Journal of Hydrogen Energy, vol. 40, pp. 3359-3369, 2015.
[46] M. Alishahi, F. Mahboubi, S. M. Mousavi Khoie, M. Aparicio, R. Hübner, F. Soldera & R. Gago, "Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells", Journal of Power Sources, vol. 322, pp. 1-9, 2016.
[47] S. Maeng, L. Axe, T. A. Tyson, L. Gladczuk & M. Sosnowski, "Corrosion behaviour of magnetron sputtered α- and β-Ta coatings on AISI 4340 steel as a function of coating thickness", Corrosion Science, vol. 48, pp. 2154-2171, 2006.
[48] A. Robin, "Corrosion behaviour of tantalum in sodium hydroxide solutions", Journal of Applied Electrochemistry, vol. 33, pp. 37-42, 2003.
[49] C. Liu, Q. Bi, A. Leyland & A. Matthews, "An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling", Corrosion Science, vol. 45, pp. 1243-1256, 2003.
[50] N. D. Nam, M. J. Kim, D. S. Jo, J. G. Kim & D. H. Yoon, "Corrosion protection of Ti/TiN, Cr/TiN, Ti/CrN, and Cr/CrN multi-coatings in simulated proton exchange membrane fuel cell environment", Thin Solid Films, vol. 545, pp. 380-384, 2013.
[51] C. Liu, Q. Bi, A. Leyland & A. Matthews, "An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour", Corrosion Science, vol. 45, pp. 1257-1273, 2003.
[52] V. Schnabel, J. Bednarcik, D. Music, T. Pazur, C. Hostert & J. M. Schneider, "Temperature-Induced Short-Range Order Changes in Co67B33 Glassy Thin Films and Elastic Limit Implications", Materials Research Letters, vol. 3, pp. 82-87, 2015.
_||_