بررسی فرایند اتصال فاز مایع گذرا (TLP) برای فولاد زنگ نزن آستنیتی AISI321 با استفاده از لایه واسط تجاری MBF-20
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمحمد علی میثاقی 1 , رضا بختیاری 2
1 - مدیر فنی
2 - استادیار دانشگاه رازی کرمانشاه
کلید واژه: خواص مکانیکی, فراینداتصالTLP, فولاد AISI 321, لایه واسط MBF-20, بررسی ریزساختاری,
چکیده مقاله :
با توجه به نیاز صنعت به فرایند اتصال مناسب در رابطه با قطعات ساخته شده از فولاد زنگ نزن آستنیتیAISI 321 که در تجهیزات نیروگاهی نظیر توربینها کاربرد دارند، در این پژوهش، اتصال متجانس این فولاد از طریق فرایند اتصال فاز مایع گذرا (TLP) با لایه واسط با نام تجاری MBF-20 مورد بررسی قرار گرفت. فرایند اتصال در دماهای 1050 ،1100 ، 1150 و 1200 درجه سانتی گراد و به مدت زمان 30 الی 120 دقیقه در یک کوره خلا انجام پذیرفت. نمونه های اتصال داده شده با استفاده از میکروسکوپ نوری و میکروسکوپ الکترونی روبشی (SEM) مورد بررسی ریز ساختاری قرار گرفتند. آنالیز عنصری ترکیبات مشاهده شده در اتصالات نیز با استفاده از سیستم EDS میکروسکپ SEM صورت گرفت. آنالیز فازی با استفاده از روش XRD صورت گرفت. جهت بررسی نحوه توزیع عناصر در عرض اتصال، آنالیز خطی و جهت بررسی خواص مکانیکی اتصال، نمونه های اتصال یافته تحت آزمونهای استحکام برشی و ریز سختی سنجی قرار گرفتند. حداقل زمان لازم برای تکمیل انجماد همدما در دماهای 1100،1050 و 1150 درجه سانتی گراد به ترتیب 75، 45 و30 دقیقه بدست آمد. در حالت انجماد همدمای ناقص، در مرکز اتصال و مناطق متاثر از نفوذ، ترکیبات Ni-B,Ni-Si,Cr-B,Fe-B مشاهده گردید. با افزایش دما و زمان اتصال، ساختار اتصال همگن تر، سختی کمتر و استحکام برشی اتصال بیشتر بدست آمد. در دمای1150 درجه سانتیگراد و 60 دقیقه و همچنین 1050 درجه سانتیگراد و 120 دقیقه، بیشترین استحکام برشی به ترتیب معادل 95 و 94 در صد استحکام برشی فلز پایه حاصل گردید.
According to the industry’s need to an appropriate bonding process for components made of AISI 321 austenitic stainless steel, which is used in power-plant parts such as turbines, transient liquid phase (TLP) bonding of AISI 321 steel using MBF-20 interlayer was studied in this research. TLP bonding was performed in a vacuum furnace at 1050, 1100, 1150 and 1200oC for 30-120 minutes. The microstructural studies were conducted on the joints using an optical microscope and an scanning electron microscope (SEM). Phase analysis of the joints was also performed a SEM/EDS and XRD system. To investigate the distribution of elements across the joints, line scan analysis was used. The shear strength test and the micro hardness measurement test were conducted on the joints, in order to study the joints’ mechanical properties. The minimum time of complete isothermal solidification at 1050, 1100 and 1150oC was obtained as 75, 45 and 30 minutes, respectively. At the incomplete isothermal solidification condition, Fe-B, Cr-B, Ni-Si and Ni-B phases were observed at the joint centerline and diffusion affected zone (DAZ). With increasing bonding temperature and time, more homogenous joint, lower hardness at the different zones of the joints and higher shear strength were obtained. But for the joints made at 1200oC, higher than the critical bonding temperature, the joint shear strength was reduced. For the joints made at 1150oC for 60 minutes and also at 1050oC for 120 minutes, the maximum shear strength was obtained as 95 and 94 percent of that of the base metal, respectively.
[1] ر. نیسی و م. شمعانیان، "ارزیابی خواص اتصال فولاد زنگ نزن دو فازی UNSS32205 به فولاد زنگ نزن آستنیتی AISI316L با استفاده از فرایند جوشکاری قوسی تنگستن تحت گاز محافظ پالسی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره چهارم، زمستان 1394.
[2] M. Mazar Atabaki, “Partial transient liquid phase diffusion bonding of Zircaloy- 4to stabilized austenitic stainless steel 321 using active titanium filler metal”, JManuf Sci Eng, Vol. 133, No. 5, pp. 99-110, 2011.
[3] M. Mazar Atabaki, ME. Bajgholi & EH. Dehkordi, “Partial transient liquid phase diffusion bonding of zirconium alloy (Zr–2.5Nb)to stainless steel 321”, Materials and Design, Vol. 42, pp. 172–183, 2012.
[4] MA. Arafin, M. Medraj, DP. Turner & P. Bocher, “Effect of alloying elements on the isothermal solidification during TLP bonding of SS 410 and SS 321 using a BNi-2 interlayer”, Materials Chemistry and Physics, Vol. 106, pp. 109–11, 2007.
[5] م. خانزاده، ح. بختیاری و ع. اکبری، "تاثیر عملیات حرارتی بر روی ریز ساختار، سختی و استحکام فصل مشترک جوش انفجاری فولاد زنگ نزن 321 به آلومینیم 1230 "، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره چهارم، زمستان 1394.
[6] EA. Brandes & GB. Brook, “Smithells metal reference book”, 11-7-11-485, oxford, Butterworth, Heinemann, 1992.
[7] P. Villars, A. Prince & H. Okamoto, “Handbook of Ternary Alloy Phase Diagrams”, ASM International, Materials Park, OH, USA, pp. 5508-5513, 1995.
[8] JSC. Jang, HP. Shih, “Evolution of Microstructure of AlSI 304 Stainless Steel Joint Brazed by Mechanically Alloyed Nickel Base Filler with Different Silicon Content”, Journal of MaterialScience Letters, Vol. 22, pp. 79-82, 2003.
[9] R. Bakhtiari & A. Ekrami, “The effect of gap size on the microstructure and mechanical properties of the transient liquid phase bonded FSX-414 superalloy”, Vol. 40, pp. 130-137, 2012.
[10] M. Pouranvari, A. Ekrami & AH. Kokabi, “Microstructure–properties relationship ofTLP-bonded GTD-111 nickel-base superalloy”, Mater Sci Eng, Vol. 490A, pp. 229–34, 2008.
[11] R. Bakhtiari, A. Ekrami & TI. Khan, “The effect of TLP bonding temperature on microstructural and mechanical property of joints made using FSX-414 superalloy”, Vol. 546A, pp. 291-300, 2012.
[12] R. Bakhtiari, “The effect of TLP bonding temperature on microstructural and mechanical property of joints made using FSX-414 superalloy”, Ph.D. Thesis on Materials Engineering, sharif university, 2012.
_||_