بررسی اثر مدل بیماری دیابت القایی بر اندیکاتورهای لیپیدی سنتی و غیر سنتی(T&NT)،بیومارکر TyG و شاخص CHGدر موش صحرایی نژاد ویستار(Wistar)
محورهای موضوعی : بافت و آسیب شناسی
مینا ارجمندی
1
,
سید مرتضی رزاقی منش
2
*
,
زهرا صادقیان
3
,
فاطمه همایون
4
1 - دانش آموخته دکتری عمومی دامپزشکی، گروه دامپزشکی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران
2 - گروه علوم درمانگاهی دامپزشکی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران
3 - دانشجوی دکتری عمومی دامپزشکی، گروه دامپزشکی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران
4 - دانشجوی دکتری عمومی دامپزشکی، گروه دامپزشکی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران
کلید واژه: دیابت القایی, اندیکاتورهای لیپیدی سنتی و غیر سنتی, شاخصTyG, شاخصCHG, موش صحرایی ویستار,
چکیده مقاله :
این مطالعه با هدف بررسی اثر مدل بیماری دیابت بر شاخصهای لیپیدی و متابولیکی ترکیبی نوین و جامع انجام گردید. در این مطالعه تعداد 8 سر موش صحرایی به صورت تصادفی به دو گروه مساوی کنترل سالم و کنترل دیابتی تقسیم شدند. پس از گذشت 21 روز از القای دیابت در گروه کنترل دیابتی، شاخصهای پنل لیپیدی خون شامل؛ کلسترول LDL،HDL،تری گلیسیرید و کلسترول تام در هر دو گروه اندازه گیری شدند. مطابق با نتایج؛ در گروه کنترل دیابتی نسبت به گروه کنترل سالم، در میانگین مقادیر شاخصهای لیپیدی سنتی شامل:کلسترول تام(TC)، تری گلیسیرید(TG)، کلسترول LDL و VLDL_C افزایش ایجاد گردید که این افزایش در مقادیر معنی دار نبود (P>0/05)، در میانگین مقادیر شاخص کلسترول HDL کاهش ایجاد گردید که این کاهش در مقادیر معنی دار نبود(P>0/05)، در میانگین مقادیر شاخصهای لیپیدی غیر سنتی افزایش ایجاد گردید که این افزایش در شاخص های CRI-Ⅰ، CRI-Ⅱ، AC،TG/HDL ratio وRC معنی دار نبود(P>0/05) و در شاخصهای AIP، Non_HDL، ACI و RC/HDL ratio معنی دار بود(P˂0/05). در میانگین مقادیر شاخصهای TyG و CHG افزایش ایجاد گردید که این افزایش در مقادیر معنی دار بود(P˂0/05). القای بیماری دیابت به ایجاد اختلال در پنل لیپیدی خون و شاخصهای ترکیبی متابولیک و دیس لیپیدمی آتروژنیک و متعاقب آن خطر بروز عوارض میکرو و ماکروواسکولار و بیماری های قلبی عروقی آترواسکلروتیک ناشی از آن منجر می گردد.
This study was conducted to investigate the effect of a new and comprehensive combined model of diabetes on lipid and metabolic indices. In this study, 8 rats were randomly divided into two equal groups: healthy control and diabetic control. After 21 days of diabetes induction in the diabetic control group, blood lipid panel indices including; LDL cholesterol, HDL cholesterol, triglycerides and total cholesterol were measured in both groups. According to the results; In the diabetic control group compared to the healthy control group, there was an increase in the mean values of traditional lipid indices including total cholesterol (TC), triglyceride (TG), LDL cholesterol and VLDL_C, which was not significant (P>0.05). There was a decrease in the mean values of HDL cholesterol index, which was not significant (P>0.05). There was an increase in the mean values of non-traditional lipid indices, which was not significant in CRI-Ⅰ, CRI-Ⅱ, AC, TG/HDL ratio and RC indices (P>0.05), and it was significant in AIP, Non_HDL, ACI and RC/HDL ratio indices (P˂0.05). There was an increase in the mean values of TyG and CHG indices, which was significant (P˂0.05). Induction of diabetes leads to disruption of the blood lipid panel and combined metabolic indices and atherogenic dyslipidemia, and subsequently the risk of micro- and macrovascular complications and resulting atherosclerotic cardiovascular diseases.
1.Kalra S,Raizada N. Dyslipidemia in diabetes. Indian Heart J .2024 Mar 1;76)1(:80-82.https:// doi.org/10.1016/j.ihj.2023.11.002
. 2.Rana JS, Liu JY, Moffet HH, Solomon MD, Go AS, Jaffe MG, Karter AJ. Metabolic dyslipidemia and risk of coronary heart disease in 28,318 adults with diabetes mellitus and low-density lipoprotein cholesterol <100 mg/dl. Am J Cardiol. 2015 Dec 1;116(11):1700-4. doi: 10.1016/j.amjcard.2015.08.039
. 3.Wu L, Parhofer KG. Diabetic dyslipidemia. Metab Clin Exp. 2014 Dec;63(12):1469-79.doi: 10.1016/j.metabol.2014.08.010
. 4.Arca M, Pigna G, Favoccia C. Mechanisms of diabetic dyslipidemia: relevance for atherogenesis. Curr Vasc Pharmacol. 2012 Nov 1;10(6):684-6. doi: 10.2174/157016112803520864
. 5.Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 2018 Sep 1;25(9):771-782. doi: 10.5551/jat.RV17023
. 6.Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta.2006 Jun;368(1–2):1–19.doi: 10.1016/j.cca.2005.12.026
. 7.Maahs MD, Eckel, RH. Type 1 diabetes mellitus and dyslipidemia. In:Garg, A.(eds) dyslipidemias. Contemp. Endocrinol.(Totowa, NJ.U.S.): Humana Press.2015.p:115-135. https:// doi.org/10.1007/978-1-60761-424-1_7
. 8.Mona HM, Sahar SA, Hend SM, Nanees AW. Dyslipidemia in type 1 diabetes mellitus: relation to diabetes duration, glycemic control, body habitus, dietary intake and other epidemiological risk factors. Gaz Egypt Paediatr Assoc. 2015 Jun 1;63(2):63-68. https:// doi.org/10.1016/j.epag.2015.03.001
. 9.Vergès B. Dyslipidemia in Type 1 diabetes: a masked danger. Trends Endocrinol Metab. 2020 Jun;31(6):422-434. doi: 10.1016/j.tem.2020.01.015
. 10.Malmström R, Packard CJ, Caslake M, Bedford D, Stewart P, Yki-Järvinen H, Shepherd J, Taskinen MR. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes. 1998 May;47(5):779-87. doi: 10.2337/diabetes.47.5.779
. 11.
Vergès B. Lipid disorders in type 1 diabetes. Diabetes Metab. 2009 Nov 1;35(5):353-60. doi: 10.1016/j.diabet.2009.04.004. 12.Ganjali S, Dallinga-Thie GM, Simental-Mendía LE, Banach M, Pirro M, Sahebkar A. HDL functionality in type 1 diabetes. Atherosclerosis. 2017 Dec 1;267:99-109.doi:10.1016/j.atherosclerosis.2017.10.018
. 13.DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018 Jun 16;391(10138):2449-2462. doi: 10.1016/S0140-6736(18)31320-5
. 14.Lucier J,Mathias PM.Type 1 diabetes. In: StatPearls [Internet]. Treasure Island (FL): StatPearls: [updated 2024 Oct 5]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507713
/. 15.Lu S, Kuang M, Yue J,Hu C,Sheng G,Zou Y. Utility of traditional and non-traditional lipid indicators in the diagnosis of nonalcoholic fatty liver disease in a Japanese population. Lipids Health Dis. 2022 Oct 7;21(1):95. https://doi.org/10.1186/s12944-022-01712-z
. 16.Zhao Z, Wang H, Hou Q, Zhou Y, Zhang Y. Non-traditional lipid parameters as potential predictors of carotid plaque vulnerability and stenosis in patients with acute ischemic stroke. Neurol Sci. 2023 Mar;44(3):835-843. doi: 10.1007/s10072-022-06472-3
. 17.Khazaal M. Concise Review of Common Non-Traditional Dyslipidemic Indices in Clinical Practice. Alq J Med App Sci. 2023;6(2):395-400. https://doi.org/10.0000/ajmas.8190784
. 18.Guo J, Wang A, Wang Y, Liu X, Zhang X, Wu S, Zhao X. Non-traditional Lipid Parameters as Potential Predictors of Asymptomatic Intracranial Arterial Stenosis. Front Neurol. 2021 Aug 31;12:679415. doi: 10.3389/fneur.2021.679415
. 19.Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022 May 6;21(1):68. https://doi.org/10.1186/s12933-022-01511-x
20.Avagimyan A, Pogosova N, Fogacci F, Aghajanova E, Djndoyan Z, Patoulias D, et al. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int J Cardiol. 2025 Jan 1;418:132663. https://doi.org/10.1016/j.ijcard.2024.132663
. 21.Sun Y, Ji H, Sun W, An X, Lian F. Triglyceride glucose (TyG) index: A promising biomarker for diagnosis and treatment of different diseases. Eur J Intern Med. 2025 Jan;131:3-14. doi: 10.1016/j.ejim.2024.08.026
. 22.Mansoori A, Poudineh M, Dianati M, Ferns G, Ghamsary M, Esmaily H, et al. A Novel Composite Index for Cardiovascular Risk: The Cholesterol, high-density lipoprotein, Glucose (CHG) Index. medRxiv. 2025 Apr 4:2025-04. doi:10.1101/2025.04.02.25325143
. 23.Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: HHS,CDC. 2011
. 24.Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, et al. Dyslipidemia in patients with diabetes. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. 2000 [Updated 2023 Dec 4] Available from: https://www.ncbi.nlm.nih.gov/books/NBK305900
/. 25.The DCCT Research Group. Lipid and lipoprotein levels in patients with IDDM diabetes control and complication trial experience. Diabetes Care. 1992 Jul 1;15(7):886-94. doi: 10.2337/diacare.15.7.886
. 26.Guy J, Ogden L, Wadwa RP, Hamman RF, Mayer-Davis EJ, Liese AD, et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for Diabetes in Youth case-control study. Diabetes Care. 2009 Mar; 32(3):416-20. doi: 10.2337/dc08-1775
. 27.Hadi WH, Khudair TT, Al-Fartosi KG. Level of lipid profile and liver enzyme of diabetic male rats induced by streptozotocin treated with forxiga. 3C Empresa. 2023;12(1):273-88. doi.org/10.17993/3cemp.2023.120151.273-288
. 28.Correla-santos AM, Suzuki A, Anjos JS, Rego TS, Almeida KCL,Boavetura GT. Induction of type 2 diabetes by low dose of streptozotocin and high-fat diet-fed in Wistar rats. Medicina. 2012;45(4),436-44
. 29.The Editors of Encyclopaedia Britannica."Islets of Langerhans"[Internet]. Encyclopedia Britannica:2025 [updated 2025 Jun27].Available from: https://www.britannica.com/science/islets-of-Langerhans
. 30.Vargas E, Joy NV, Carrillo Sepulveda MA. Biochemistry, insulin metabolic effects In: StatPearls [Internet]. Treasure Island (FL):StatPearls.[Updated 2022 Sep 26].Available from: https://www.ncbi.nlm.nih.gov/books/NBK525983
/. 31.Ambika S,Saravanan R,Thirumavalavan K. Antidiabetic and antihyperlipidemic effect of p-hydroxycinnamic acid on streptozotocin-induced diabetic Wistar rats.Biomed Aging Pathol.2013 Oct 1;3(4):253-257. https://doi.org/10.1016/j.biomag.2013.09.004
. 32.
Mathé D. Dyslipidemia and diabetes: animal models. Diabete Metab. 1995 Apr;21(2):106-11. PMID: 7621969. 33.Ukpabi C, Okoro OA, Ndulaka J. C, Ndukwe O. K, Chukwu M. N . Alleviation of diabetic dyslipidemia in Alloxan-induced diabetic rats using aqueous seed extract of Persea Americana. J. Biotech Res.2020; 4(1): 1-8. https:// doi.org/10.20448/805.41.1.8
. 34.Ali EY, Abu-Elsaoud A, Moghzi MM, Marie OM. Ethanolic extract of orange leaves Ameliorates dyslipidemia in Streptozotocin-induced diabetic rats. Adv Environ Life Sci. 2024 Jan 1;5(1):35-41. doi: 10.21608/aels.2024.236942.1039
. 35.Rotimi S, Ibiyemi O, Oladipo A ,Inga A. Improvement of diabetic dyslipidemia by Legumes in experimental rats. Afr J Food Agric Nutr Dev.2013 Apr 25; 13(57). 7606-7623.doi:10.18697/ajfand.57.11460
. 36.Goldberg I.J. Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001 Mar 1;86(3):965-71. doi.org/10.1210/jcem.86.3.7304
. 37.Hamzah RU, Odetola AA, Erukainure OL, Oyagbemi AA. Peperomia pellucida in diets modulates hyperglyceamia, oxidative stress and dyslipidemia in diabetic rats. J. Acute Dis. 2012 Nov 20;1(2):135-40. doi:10.1016/S2221-6189(13)60074-8
. 38.Shahrestan F, Jafari P,Gharebaghi A, Khani Farahani I, Shahrestan E. Effect of bioflora and Cinnamon extract consumption on dyslipidemia and cardiovascular disease in a diabetic rat model. J Arak Uni Med Sci 2020; 23 (2) :198-209 .doi: 10.32598/JAMS.23.2.5997.1
. 39.Mo D, Zhang P, Zhang M, Dai H, Guan J. Cholesterol, high-density lipoprotein, and glucose index versus triglyceride–glucose index in predicting cardiovascular disease risk: a cohort study. Cardiovasc Diabetol. 2025 Mar 10;24(1):116. https://doi.org/10.1186/s12933-025-02675-y
. 40.Çatak M, Konuk ŞG, Hepsen S. The cholesterol-HDL-glucose (CHG) index and traditional adiposity markers in predicting diabetic retinopathy and nephropathy. J Diabetes Investig. 2025 Aug;16(8):1487-1494. doi: 10.1111/jdi.70086
. 41.Shan Y, Liu Q, Gao T. Triglyceride-glucose index in predicting the risk of new-onset diabetes in the general population aged 45 years and older: a national prospective cohort study. BMC Endocr Disord. 2025 Jan 26;25(1):25. https://doi.org/10.1186/s12902-025-01848-w
. 42.Jin JL, Cao YX, Wu LG, You XD, Guo YL, Wu NQ, et al. Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. J Thorac Dis. 2018 Nov;10(11):6137-6146. doi: 10.21037/jtd.2018.10.79
. 43.Fu B, Zeng Y, Wang M, Zhao L, Sun L, Wang T, et al. The triglyceride-glucose index is a predictor of major adverse cardiovascular events in patients with coronary artery disease and psoriasis: a retrospective cohort study. Diabetol Metab Syndr. 2024 Jul 31;16(1):184. https://doi.org/10.1186/s13098-024-01423-8
. 44.Wang K, Yu G, Yan L, Lai Y, Zhang L. Association of non-traditional lipid indices with diabetes and insulin resistance in US adults: mediating effects of HOMA-IR and evidence from a national cohort. Clin Exp Med. 2025 Aug 7;25(1):281. doi: 10.1007/s10238-025-01819-4
. 45.Sheng G, Kuang M, Yang R, Zhong Y, Zhang S, Zou Y. Evaluation of the value of conventional and unconventional lipid parameters for predicting the risk of diabetes in a non-diabetic population. J Transl Med. 2022 Jun 11;20(1):266. https://doi.org/10.1186/s12967-022-03470-z
. 46.Yilmaz R, Toprak K, Karagoz A, Yontar OC, Ucar M, Kokcu HI, et al. Prognostic Value of Non-Traditional Lipid Indices for In-Hospital Mortality in Patients with Acute Coronary Syndromes. Medicina (Kaunas). 2025 May 4;61(5):846. doi: 10.3390/medicina61050846
. 47.Deng SM, Hu XQ, Zhang XY. Associations of nontraditional lipoprotein ratios with future cardiovascular events in patients with type 2 diabetes mellitus. World J Diabetes. 2025 Jun 15;16(6):104120. doi: 10.4239/wjd.v16.i6.104120
. 48.Song Q, Liu X, Wang A, Wang Y, Zhou Y, Zhou W, Wang X. Associations between non-traditional lipid measures and risk for type 2 diabetes mellitus in a Chinese community population: a cross-sectional study. Lipids Health Dis. 2016 Apr 5;15:70. doi: 10.1186/s12944-016-0239-y
. 49.Huang C, Zhang Y, Yang X, Li G, Gao Z. Associations between non-traditional lipid parameters and normoglycemic reversion in Chinese adults with prediabetes: a retrospective analysis. Front. Endocrinol. 2025 Jun 24;16:1502861. https://doi.org/10.3389/fendo.2025.1502861
. 50.Hedayatnia M, Asadi Z, Zare-Feyzabadi R, Yaghooti-Khorasani M, Ghazizadeh H, Ghaffarian-Zirak R, et al. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis .2020 Mar 16;19(1):42.https://doi.org/10.1186/s12944-020-01204-y
. 51.
Lavin N. Manual of endocrinology and metabolism.5th ed.Philadelphia:Wolters Kluwer, 2019. 52.Yang T, Qi F, Guo F, Shao M, Song Y, Ren G. et al. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med . 2024 May 26;30(1):71. https://doi.org/10.1186/s10020-024-00824-9
. 53.Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective factors and the pathogenesis of complications in diabetes. Endocr Rev. 2024 Apr;45(2):227-252. doi: 10.1210/endrev/bnad030
. 54.Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence.Diabetologia. 2019 Jan;62(1):3-16.https://doi.org/10.1007/s00125-018-4711-2
. 55.Papatheodorou K, Banach M, Edmonds M,Papanas N,Papazoglou D.Complications of diabetes.J.Diabetes Res. 2015 July 12;2015:1-5. https://doi.org/10.1155/2015/189525
. 56.Afaya RA, Bam V, Azongo TB, Afaya A .Knowledge of chronic complications of diabetes among persons living with type 2 diabetes mellitus in northern Ghana. PLoS One. 2020 Oct 28;15(10):1-14. https://doi.org/10.1371/journal.pone.0241424
.