تاثیر تابش لیزر کم توان فراجمجمه ای بر اختلالات حافظه اجتنابی و برهم کنش اجتماعی ناشی از بی وزنی شبیه سازی شده در موش نر نژاد Balb/C
سید زانیار اطهری
1
(
گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی تبریز، تبریز، ایران.
)
جواد محمودی
2
(
مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی تبریز، تبریز، ایران
)
فرشته فرج دخت
3
(
گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی تبریز، تبریز، ایران.
)
کلید واژه: لیزرتراپی کم توان, بر هم کنش اجتماعی, بی¬وزنی, فضانوردی, موش,
چکیده مقاله :
تعاملات اجتماعی و اختلالات حافظه اجتنابی ازعوارض اصلی و مهم مغزی به دنبال بیوزنی در شرایط فضانوردی میباشد.لیزرکمتوان فراجمجمهای یک روش غیرتهاجمی است که دارای اثرات محافظت کننده مغزی و بهبوددهنده عملکرد شناختی با تاثیر بر شکل پذیری نورونی در مغز است. هدف از این مطالعه، ارزیابی اثر تابش لیزر کمتوان فراجمجمهای بر اختلالات حافظه اجتنابی و تعاملات اجتماعی ناشی از بیوزنی شبیهسازیشده در موشهای نر نژادBalb/Cمیباشد. در این مطالعه تجربی، 24 سر موش نر نژادBalb/Cبه سه گروه مساوی شامل کنترل، بیوزنی القایی(HU)و همچنینHUبه همراه تیمار با لیزر(HU+PBM)تقسیم شدند. مدل بیوزنی با استفاده از تکنیک معلق سازی اندامهای خلفی(Hindlimb Unloading)به مدت14روز اعمال گردید و در گروهHU+PBMهمزمان با القاء مدل، حیوانات با لیزر با طول موج810نانومتر تیمار شدند. سپس ارزیابی رفتاری با آزمونهای حافظه اجتنابی و تعامل اجتماعی انجام شد. همچنین، میزان عامل نوروتروفیک مشتق از مغز(BDNF)بهعنوان شاخصی از نوروپلاستیسیتی در بخش پره فرونتال مغز با روشELISAاندازهگیری شد. دادههای حاصله با آزمون آماری آنوا یکطرفه و تست تعقیبی توکی آنالیز شدند. یافتهها نشان داد که بیوزنی شبیهسازیشده موجب کاهش معنیدار در شاخصهای برهم کنش اجتماعی، اختلال در حافظه اجتنابی و افت سطحBDNFشد(05/0p<). در مقابل، تیمار با لیزر کمتوان در گروه HU+PBM بهطور معنادار این شاخصها را بهبود بخشید(05/0p<). نتایج این مطالعه نشان داد که لیزر کمتوان احتمالا از طریق افزایشBDNF، میتواند بهعنوان یک مداخله غیرتهاجمی مؤثردر مقابله با اختلالات تعاملات اجتماعی و حافظه اجتنابی ناشی از شرایط بی وزنی فضایی مطرح شود.
چکیده انگلیسی :
Social interaction impairments and avoidance memory deficits are among the key neurological complications associated with microgravity during spaceflight.Transcranial low-level laser therapy(tLLLT),as a non-invasive intervention,has been proposed as a potential strategy to counteract these deficits by modulating brain plasticity.This study aimed to evaluate the effects of tLLLT on social interaction and avoidance memory disorders induced by simulated microgravity in male Balb/C mice.In this experimental study,24male Balb/C mice were randomly divided into three equal groups:Control,Hindlimb Unloading(HU),and HU with laser treatment(HU+PBM).Simulated microgravity was induced using the hindlimb unloading technique for a duration of 14-days and in the HU+PBM group,animals were treated with a laser at a wavelength of 810 nm concurrently with the induction of the HU model.Behavioral assessments were performed using the Inhibitory Avoidance test and the Social Interaction test.Additionally, prefrontal levels of brain-derived neurotrophic factor(BDNF) were measured using the ELISA method as a biomarker of neuroplasticity.Data were analyzed using one-way ANOVA followed by Tukey's post hoc test.The results demonstrated that simulated microgravity significantly reduced sociability indices,impaired avoidance memory,and decreased BDNF levels(p<0.05).In contrast,laser treatment in the HU+PBM group significantly improved all of these parameters compared to the HU group(p<0.05).These findings suggest that tLLLT,likely through upregulation of BDNF,may serve as an effective non-invasive approach for mitigating social and cognitive deficits induced by spaceflight-like conditions.
• Abijo, A., Lee, C. Y., Huang, C. Y., Ho, P. C. and Tsai, K. J. (2023). The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines, 11(7).
• Berezovskaya, A. S., Tyganov, S. A., Nikolaeva, S. D., Naumova, A. A., Shenkman, B. S. and Glazova, M. V. (2021). Plantar stimulations during 3-day hindlimb unloading prevent loss of neural progenitors and maintain ERK1/2 activity in the rat hippocampus. Life, 11(5): 449.
• Ferreira, J. A., Crissey, J. M. and Brown, M. (2011). An alternant method to the traditional NASA hindlimb unloading model in mice. Journal of visualized experiments: JoVE, 49: 2467.
• Globus, R. K. and Morey-Holton, E. (2016). Hindlimb unloading: rodent analog for microgravity. Journal of applied physiology, 120(10): 1196-1206.
• Gómez, X., Sanon, S., Zambrano, K., Asquel, S., Bassantes, M., Morales, J. E., Otáñez, G., Pomaquero, C., Villarroel, S. and Zurita, A. (2021). Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. npj Microgravity, 7(1): 35.
• Gros, A., Furlan, F. M., Rouglan, V., Favereaux, A., Bontempi, B. and Morel, J.-L. (2024). Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. npj Microgravity, 10(1): 69.
• Gupta, U., Baig, S., Majid, A. and Bell, S. M. (2023). The neurology of space flight; How does space flight effect the human nervous system?. Life Sciences in Space Research, 36: 105-115.
• Hupfeld, K. E., McGregor, H. R., Reuter-Lorenz, P. A. and Seidler, R. D. (2021). Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neuroscience & Biobehavioral Reviews, 122: 176-189.
• Kazmi, S., Farajdokht, F., Meynaghizadeh-Zargar, R., Sadigh-Eteghad, S., Pasokh, A., Farzipour, M., Farazi, N., Hamblin, M. R. and Mahmoudi, J. (2023). Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Research, 1821: 148583.
• Kulikova, E., Kulikov, V., Sinyakova, N., Kulikov, A. and Popova, N. (2017). The effect of long-term hindlimb unloading on the expression of risk neurogenes encoding elements of serotonin-, dopaminergic systems and apoptosis; comparison with the effect of actual spaceflight on mouse brain. Neuroscience Letters, 640: 88-92.
• Liang, R., Wang, L., Sun, S., Zheng, C., Yang, J. and Ming, D. (2022). Medial prefrontal cortex and hippocampus in mice differently affected by simulate microgravity and social isolation associated with the alternation of emotional and cognitive functions. Life Sciences in Space Research, 33: 21-32.
• Lipshits, M. and Levik, Y. S. (2023). Cognitive Functions of the Brain: A Review of Research in Weightlessness. Human Physiology, 49(2): 165-175.
• Montazeri, K., Farhadi, M., Fekrazad, R., Akbarnejad, Z., Chaibakhsh, S. and Mahmoudian, S. (2021). Transcranial photobiomodulation in the management of brain disorders. Journal of Photochemistry and Photobiology B: Biology, 221: 112207.
• Nomura, S., Kami, K., Kawano, F., Oke, Y., Nakai, N., Ohira, T., Fujita, R., Terada, M., Imaizumi, K. and Ohira, Y. (2012). Effects of hindlimb unloading on neurogenesis in the hippocampus of newly weaned rats. Neuroscience Letters, 509(2): 76-81.
• Oluwafemi, F. A., Abdelbaki, R., Lai, J. C.-Y., Mora-Almanza, J. G. and Afolayan, E. M. (2021). A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges. Life sciences in space research, 28: 26-31.
• Salehpour, F., Farajdokht, F., Mahmoudi, J., Erfani, M., Farhoudi, M., Karimi, P., Rasta, S. H., Sadigh-Eteghad, S., Hamblin, M. R. and Gjedde, A. (2019). Photobiomodulation and coenzyme Q10 treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Frontiers in cellular neuroscience, 13: 74.
• Salehpour, F., Mahmoudi, J., Kamari, F., Sadigh-Eteghad, S., Rasta, S. H. and Hamblin, M. R. (2018). Brain photobiomodulation therapy: a narrative review. Molecular neurobiology, 55: 6601-6636.
• Shang, X., Xu, B., Li, Q., Zhai, B., Xu, X. and Zhang, T. (2017). Neural oscillations as a bridge between glutamatergic system and emotional behaviors in simulated microgravity-induced mice. Behavioural Brain Research, 317: 286-291.
• Strangman, G. E., Sipes, W. and Beven, G. (2014). Human cognitive performance in spaceflight and analogue environments. Aviation, space, and environmental medicine, 85(10): 1033-1048.
• Thunshelle, C. and Hamblin, M. R. (2016). Transcranial Low-Level Laser (Light) Therapy for Brain Injury. Photomed Laser Surg, 34(12): 587-598.
• Xuan, W., Vatansever, F., Huang, L. and Hamblin, M. R. (2014). Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. Journal of biomedical optics, 19(10): 108003-108003.
• Yang, W. and Zhang, H. (2016). Effects of hindlimb unloading on neurotrophins in the rat spinal cord and soleus muscle. Brain Research, 1630: 1-9.
• Yin, Y., Liu, J., Fan, Q., Zhao, S., Wu, X., Wang, J., Liu, Y., Li, Y. and Lu, W. (2023). Long-term spaceflight composite stress induces depression and cognitive impairment in astronauts—insights from neuroplasticity. Translational Psychiatry, 13(1): 342.
• Zhang, X., Zhu, H. and Zhang, J. (2025). Oxidative Stress on the Ground and in the Microgravity Environment: Pathophysiological Effects and Treatment. Antioxidants, 14(2): 231.
• Zhang, Y., Huang, H., Yao, C., Sun, X., He, Q., Choudharyc, M. I., Chen, S., Liu, X. and Jiang, N. (2023). Fresh Gastrodia elata Blume alleviates simulated weightlessness-induced cognitive impairment by regulating inflammatory and apoptosis-related pathways. Frontiers in Pharmacology, 14: 1173920.
• Zhang, Y., Wang, Q., Chen, H., Liu, X., Lv, K., Wang, T., Wang, Y., Ji, G., Cao, H. and Kan, G. (2018). Involvement of cholinergic dysfunction and oxidative damage in the effects of simulated weightlessness on learning and memory in rats. BioMed research international, 2018(1): 2547532.