بررسی درک دانشآموزان دورۀ دوم ابتدایی شهر تهران از زیر ساختار جزء بهکل مفهوم کسر بر اساس نظریۀ APOS و SOLO، با استفاده از یک تکلیف غیرمعمول
محورهای موضوعی : پژوهش در برنامه ریزی درسیمهدی ایزدی 1 , ابراهیم ریحانی 2 *
1 - دانشجوی دکتری رشته آموزش ریاضی دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.
2 - دکتری رشته آموزش ریاضی، دانشیار و عضو هیئتعلمی دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.
کلید واژه: زیر ساختار جزء به کل, نظریۀ APOS و SOLO, تکلیف غیرمعمول, دانشآموزان دورۀ دوم ابتدایی, مفهوم کسر,
چکیده مقاله :
این پژوهش با هدف بررسی درک دانشآموزان دورۀ دوم ابتدایی شهر تهران از مفهوم کسر (زیر ساختار جزء به کل) بر اساس دو نظریۀ APOSوSOLO انجام شد. روش انجام این مطالعه، توصیفی - پیمایشی، جامعۀ آماری آن، دانشآموزان دورۀ دوم ابتدایی شهر تهران در سال تحصیلی 1398- 1397 و نمونۀ آن، 598 نفر از جامعۀ آماری بود که با روش نمونهگیری تصادفی چندمرحلهای انتخاب شدند. برای جمعآوری دادهها، از آزمونی با یک تکلیف غیرمعمول استفاده شد. روایی محتوایی آزمون از نظر متخصصان آموزش ریاضی مورد تأیید قرار گرفت و پایایی ابزار پژوهش بر اساس ضریب آلفای کرونباخ، 7/0 به دست آمد. نتایج این مطالعه نشان داد که دانشآموزان، درک محدودی از مفهوم کسر (زیرساختار جزء به کل) دارند و در خصوص این مفهوم، بدفهمیهای مشترکی دارند. رایجترین بدفهمیهای بهدستآمده در این مطالعه شامل 1- عدم توجه به مساوی بودن قسمتها؛ 2- درک کسر بهعنوان نسبت جزءبهجزء و 3- استفاده از تقسیمبندی تقریبی برای تعیین مقدار کسری دقیق، بود. تحلیل پاسخها بر اساس نظریه APOS مشخص کرد که دانشآموزان توانایی استفاده از این مفهوم را در مواجهه با تکالیف و موقعیتهای غیرمعمول ندارند. در تحلیل پاسخها بر اساس مدل SOLO نیز مشخص شد بیش از 60 درصد پاسخها، در سطح چند ساختاری بود. پیشنهاد این تحقیق، عدم تأکید بیشازحد بر زیر ساختار جزء به کل، ارائه فرصتهای برابر برای توسعۀ سایر زیر ساختارها و تأکید بر یادگیری مفهومی رویهها و الگوریتمهای مرتبط با مفهوم کسر در محتواها و فرصتهای آموزشی ارائهشده به دانشآموزان است.
The aim of this research was investigating understanding of Tehran’s second elementary school students of the fraction concept (part-whole subconstruct) based on APOS and SOLO theories. This study’s method was descriptive-survey method, its statistical population was Tehran’s second elementary school students in the academic year 1397-1398 and its sample was 598 people of the statistical population that selected by multistage sampling method. A test with an unusual task used for collecting data. The content validity of the research tools were confirmed by experts and scholars of mathematics education, and the reliability of the research tools was obtained based on Cronbach's alpha of 0.7. Results of this study showed that students have a limited understanding of fraction’s concept and they have common misconceptions. The most common misconceptions found include: (1) Disregarding the requirement of equal parts in part- whole subconstruct; 2- Understanding fraction in part- whole subconstruct as the part-to-part ratio & 3- Using approximate partitioning to determine the exact fraction of the specified part. Analyzing the responses based on the APOS theory also revealed students did not have ability to use this concept in dealing with unusual situations. In analyzing the responses based on the Solo model, more than 60% of the responses were in the multistructural level. The suggestions of this research are not to over-emphasize the part -whole subconstruct, creating equal opportunities for developing other subconstructs of fraction and emphasizing on conceptual learning of procedures and algorithms relative to fraction concept in content and opportunities presented to students.
Arnon, I. (1998). In the mind’s eye: How children develop mathematical concepts—Extending Piaget’s theory. Unpublished doctoral dissertation, School of Education, Haifa University.
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A Framework for Research and Curriculum Development in Mathematics Education, 5-15.
Arnon, I., Nesher, P., & Nirenburg, R. (2001). Where do Fractions Encounter their Equivalents?–Can this Encounter Take Place in Elementary-School?. International Journal of Computers for Mathematical Learning, 6(2), 167-214.
Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. Maa Notes, 37-54.
Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational number concepts. Acquisition of mathematics concepts and processes, 91-126.
Biggs, J., & Collis, K. F. (1980). SOLO taxonomy. Education News, 17(5), 19-23.
Čadež, T. H., & Kolar, V. M. (2018). How fifth-grade pupils’ reason about fractions: a reliance on part-whole subconstructs. Educational Studies in Mathematics, 99(3), 335-357.
Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational studies in mathematics, 64(3), 293.
Davis, G. E. (1989). Attainment of rational number knowledge. 1989). To challenge to change. Victoria: Mathematical Ass. of Victoria.
Davoodi, KH., Rastgar, A., Reyhani, E. Safari Azar, Sh., & Alamian, V. (2019). Grade 4 Math, volume 6.Iran: General Department printing and distribution of textbooks. [in Persian]
Depaepe, F., Torbeyns, J., Vermeersch, N., Janssens, D., Janssen, R., et al. (2015). Teachers' content and pedagogical content knowledge on rational numbers: A comparison of prospective elementary and lower secondary school teachers. Teaching and Teacher Education, 47, 82-92.
Doosti, M. (2013). A Study on Sixth Grade Students’ understanding of Fractions (Unpublished masterʼs thesis). Shahid Rajaee Teacher Training University, Faculty of Science Branch, Tehran, Iran. [in Persian]
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In The teaching and learning of mathematics at university level (pp. 275-282). Springer, Dordrecht.
Dubinsky, E., & Moses R. P. (2016). Philosophy, Math Research, Math Ed Research, K-16 Education, and the Civil Rights Movement: A Synthesis. (S. Gholamazad, Trans.). Culture and mathematics thought, 58, 67-88. (Original work published 2011)
Empson, S. B., Levi, L., & Carpenter, T. P. (2011). The algebraic nature of fractions: Developing relational thinking in elementary school. In Early algebraization (pp. 409-428). Springer, Berlin, Heidelberg.
Eskandari, N. (2013). Studying Students’ Misconceptions of Fractions Numbers and Explanation Solutions for Fix Them (Unpublished masterʼs thesis). Shahid Beheshti University, Faculty of Science Branch, Tehran, Iran. [in Persian]
Gooya, Z. (2006). The process of change the content of the school mathematics curriculum. Roshd Mathematics Education Journal, 12(46), 8-12. Teaching-Aids Publications Office, Organization of
Research& Educational Planning, Ministry of Education. [in Persian]
Hagh joo, S., & Reyhani, E. (2019). A study on performance of secondary school students in solving a spatial ability task based on SOLO theory. Technology of Education, 13(4), 639-653. [in Persian]
Izadi, M., & Reyhani, E. (2019). An Analysis on APOS Theory and its Application to Primary Mathematics Education. 4th National Conference of Research in Basic Science Education. Tehran. Iran. [in Persian]
Izadi, M., Reyhani, E., & Ahmadi, G. A. (2015). Teaching addition and subtraction: A comparative study on the math curriculum goals and the content of the first-grade math textbook in Iran, Japan, and the USA. Research in Curriculum Planning, 12(46), 55-74. [in Persian]
Izadi, M., Reyhani, E. (2020). Using An Unusual Task to Investigate Elementary School Teachers’ Mathe-matical -Task Knowledge and Common Content Knowledge of Fraction Con-cept in Tehran Province. Research in School and Virtual Learning, 7(4), 55-70. doi: 10.30473/etl.2020.49091.3079. [in Persian]
Kazemi, F., & Rafiepour, A. (2018). Developing a Scale to Measure Content Knowledge and Pedagogy Content Knowledge of In-Service Elementary Teachers on Fractions. International Journal of Science and Mathematics Education, 16(4), 737-757.
Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational numbers. In R. A. Lesh, & D. A. Bradbard (Eds.), Number and measurement: Papers from a research workshop (Vol. 7418491, pp. 101–144). Retrieved from http://files.eric.ed.gov/fulltext/ED120027.pdf
Kieren, T. E. (1980). The rational number construct —Its elements and mechanisms. In T. E. Kieren (Ed.), Recen research on number learning (pp. 125–150). Columbus, OH: ERIC Clearinghouse for Science, Mathematics and Environmental Education.
Lamon, S. J. (2001). Enculturation in mathematical modelling. In Modelling and Mathematics Education (pp. 335-341). Woodhead Publishing.
Lamon, S. J. (2012). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers. New York, NY: Routledge.
Leung, C. K. E. (2009). A preliminary study on Hong Kong students' understanding of fraction.
Marshall, S. P. (1993). Assessment of rational number understanding: A schema-based approach. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 261–288). Hillsdale, N.J: Lawrence Erlbaum Associates.
Obersteiner, A., Dresler, T., Bieck, S. M., & Moeller, K. (2019). Understanding fractions: integrating results from mathematics education, cognitive psychology, and neuroscience. In Constructing Number (pp. 135-162). Springer, Cham.
Pantziara, M., & Philippou, G. (2012). Levels of students’“conception” of fractions. Educational Studies in mathematics, 79(1), 61-83.
Park, J., Güçler, B., & McCrory, R. (2013). Teaching prospective teachers about fractions: historical and pedagogical perspectives. Educational Studies in Mathematics, 82(3), 455-479.
Pedersen, P. L., & Bjerre, M. (2021). Two conceptions of fraction equivalence. Educational Studies in Mathematics, 1-23.
Pegg, J. (1992). Assessing students’ understanding at the primary and secondary level in the mathematical sciences. Reshaping assessment practice: Assessment in the mathematical sciences under challenge, 368-385.
Pegg, J., & Tall, D. (2005). The fundamental cycle of concept construction underlying various theoretical frameworks. ZDM, 37(6), 468-475.
Pitkethly, A., & Hunting, R. (1996). A review of recent research in the area of initial fraction concepts. Educational studies in Mathematics, 30(1), 5-38.
Rafia poor gatabi, A. (2010). Designing framework for creating balance in Secondary mathematics curriculum of Iran (Unpublished doctoral dissertation). Shahid Beheshti University, Tehran, Iran. [in Persian]
Rafiepour, A., Kazemi, F., Fadaee, M. (2019). Investigate content knowledge and pedagogy content knowledge of the primary school teachers and its relation with the students’ problem-solving ability at mathematical fractions. Research in Curriculum Planning, 16(60), 104-120. Doi: 10.30486/jsre.2019.546264
Reyhani, E., Bakhshalizadeh, Sh., & Dosti, M. (2014). Grade 6th Students Understanding of Fraction. Journal of Curriculum Studies, 9(34), 133-164. [in Persian]
Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in cognitive sciences, 17(1), 13-19.
Son, J.-W., & Senk, S. L. (2010). How reform curricula in the USA and Korea present multiplication and division of fractions. Educational Studies in Mathematics, 74(2), 117–142. https://doi. org/10.1007/s10649-010-9229-6.
Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13.
Tzur, R. (2019). Developing Fractions as Multiplicative Relations: A Model of Cognitive Reorganization. In Constructing Number (pp. 163-191). Springer, Cham.
_||_