مقایسه ی تطبیقی پنجره یک لایه، دو لایه و سه لایه در جبهه ی جنوبی ساختمان های مسکونی شهر شیراز در سطوح مختلف نورگیر
محورهای موضوعی : معماری
آرش بستانیان
1
,
هادی کشمیری
2
*
,
طاهره نصر
3
1 - دانشجوی دکتری، گروه معماری، دانشکده هنر و معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
2 - دانشیار گروه معماری، دانشکده هنر و معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - دانشیار گروه معماری، دانشکده هنر و معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
کلید واژه: پنجره, یک لایه, دو لایه, سه لایه, شیراز,
چکیده مقاله :
امروزه با افزایش صنعت ساخت و ساز و معرفی متریال ها و شیوه های جدید ساخت و سرعت روز افزون آن و همچنین تبلیغات گسترده ی این شرکت ها، علی الخصوص در حوزه ی پنجره با معرفی پنجره های چند لایه، و معرفی آن ها به عنوان گزینه ی مناسب برای بهینه سازی مصرف انرژی، این پژوهش بر آن شد تا با تحلیل سطوح مختلف نورگیر در جبهه ی جنوبی ساختمان با شبیه سازی پنجره ی یک لایه، دو لایه و سه لایه، به تحلیل و آنالیز تاثیر واقعی آنها بر کنترل انرژی و همچنین تاثیر آنها از جلوگیری اتلاف انرژی پرداخته و در نهایت با مقایسه ی تطبیقی تمامی آنالیز ها با یکدیگر، در انتهای پژوهش به معرفی مناسب ترین نوع پنجره که شامل یک لایه، دو لایه و سه لایه می شود را در سطوح مختلف سطح نورگیر که از 20 الی 95 درصد متغیر می باشد پرداخته شده، و به صورت یک جدول به بیان میزان تاثیر آنها پرداخته شده است. تا طراحان و مجریان حوزه ی صنعت ساختمان، بتوانند با علم و آگاهی بیشتر دست به انتخاب گزینه ی مناسب در جهت چند لایه بودن پنجره با نسبت سطح نورگیری که دارند، بزنند.که در نهایت می توان به تاثیر قابل توجه پنجره سه لایه نسبت به یک لایه در سطوح نورگیر با درصد بالا اشاره کرد و از سوی دیگر به تاثیر بسیار ناچیز تقاوت پنجره دو لایه در مقایسه با یک لایه در سطوح نورگیر با درصد پایین اشاره کرد.
Today, with the increase in the construction industry and the introduction of new materials and methods of construction and its increasing speed, as well as the extensive advertising of these companies, especially in the field of windows, with the introduction of multi-layer windows, and their introduction as an option. suitable for optimizing energy consumption, this research aimed to analyze and analyze their real impact on energy control by analyzing the different levels of skylights on the south front of the building by simulating one-layer, two-layer and three-layer windows. Their effect on preventing energy loss and finally by comparing all the analyzes with each other, at the end of the research to introduce the most suitable type of window which includes one layer, two layers and three layers in different levels of light absorbing surface which is from 20 Up to 95% variables have been discussed, and their impact has been expressed in the form of a table. so that the designers and executives of the building industry can choose the right option for the multi-layered window with the ratio of the light-receiving surface they have with more knowledge and knowledge. He pointed out one layer in high percentage light-reflecting surfaces and on the other hand, he pointed out the very insignificant effect of two-layer window contrast compared to one layer in low percentage light-reflecting surfaces.
Extended Abstract
Introduction
Before the industrial revolution, most people lived in villages. With the advancement of technology, cities become the heart of economic activities (Zahedi and Nonezhad, 2024: 50). In recent years, factors such as global warming and the energy crisis in the world have caused many countries to experience changes in the field of effective and efficient use of energy. Especially after the crisis of 1970, there has been a significant sensitivity about energy consumption around the world (Malekahmadi et al, 2024: 2). In a world where the demand for energy is increasing every day and natural resources are decreasing at an alarming rate, managing and optimizing energy consumption has become one of the most important challenges of our century. Buildings, as one of the biggest energy consumers, play a key role in this equation, so that energy consumption in buildings accounts for one third of the country's annual energy consumption (Fatahlian and Fakhri, 2018). In general, the problem of the current research can be stated as follows: with the increase in the cost of construction, as well as the price difference between one-layer, two-layer and three-layer windows, it is very significant, and also whether these types of windows can have a definite effect on optimizing energy consumption. Therefore, the main goal of this research is to achieve the effectiveness of these types of windows in optimizing energy consumption by simulating and comparing multi-layered and single-layered windows with each other. Therefore, the current research has raised its question in this way, how was the difference between the use of single and multi-layered windows in the beginning, and the other question of the research is whether this difference is the same at different levels of the window compared to the wall, and this change to What shape is it? It is assumed that the effect of multi-layered and single-layer windows is not the same on different levels of the window, and this effect can be different on different levels, which varies in the selection of multi-layered glass for each level of the window.
Methodology
The current research method is applied in terms of purpose and based on the descriptive-analytical research data collection method. And also, data collection was in a library form, in the sense that, in the first step, the theoretical foundations and background of the research were collected from up-to-date and reliable domestic and foreign scientific sources, which included books and scientific research articles, and in the continuation of the research, analysis was done. And the data analysis has been carried out quantitatively and qualitatively, by using the modeling method of the following software, the simulation and analysis of the findings have been done.The methodology of this research is quantitative and the data collection tools are in the form of a library, and at first, using up-to-date climate data that was taken from the global website of the Energy Plus computing engine in full with all the details and in the software Metanorm of this data is categorized and converted into recognizable format in Honeybee and Ladybug energy modeling software. In order to understand and analyze before starting the design process, he collected information in the form of a library, which can be referred to international experiences in this field, and after collecting the library, he examined the climate data that was in the form of a diagram. will be paid Climatic data of Shiraz, which is one of the hot and dry cities. And finally, with the help of the patterns mentioned in the library studies and combining and analyzing it with the climatic data of Shiraz city, we will start designing with the climatic pattern of hot and dry areas. In this research, the simulation method was used with the help of Honeybee and Ladybug software, which three types of window glass were modeled as one layer, two layers and three layers and at different levels from 20% to 95%. , with a 5% change in the levels, one by one has been simulated and analyzed. At first, a building model was modeled in Rhino and Grass Hopper software, then climate data and climate modeling were done in Honey Bee software, and the outside environment was simulated in Ladybug software. Finally, all the analyzes are put together in a specific table in the form of energy consumption in watts per square meter to be analyzed and evaluated in a comparative manner.
Results and discussion
In other words, we can point to the significant effect of using a three-layer window instead of a single layer in high light-reflecting levels, such as 95% of the light-reflecting surface, the effect of which is a difference of more than 40 watts per square meter, as well as a difference of 38 and 33 watts per square meter at 90 and 85% skylight levels, a difference of 29, 25 and 21 watts per square meter for levels of 80, 75 and 70% of the skylight surface, as well as a difference of 18, 14 and 12 watts per square meter in line with the difference in window use. One layer and three layers are at 65, 60 and 50% light absorbing levels. In the following, with the decrease of the skylight surface, this difference was less than 10 watts per square meter and even less than 5 watts per square meter, and this continued until 20% of the skylight surface, the difference between one-layer and three-layer windows The layer is only 1.4 watts per square meter, and also in the light absorption levels of 20% to 50%, there is no difference between the energy consumption in two-layer and three-layer windows, or in the end, this difference reaches only one watt per square meter, this is in While this difference for two-layer and three-layer windows is 5 watts per square meter for 55% to 70% of the skylight surface, but for 70% to 85% of the skylight surface it is 7 and 8 watts per square meter, and for 90 to 95% of the surface The skylight is a maximum of 10 and 12 watts per square meter.From this analysis, it can be concluded that the use of a three-layered window is not different from a double-layered window in a window with levels of 20-50%, and the same double-layered window can be used, but in more reflective levels such as 70-95%. The more this skylight level increases, the effect of multi-layer windows can be more effective and play a significant role in energy control and optimizing energy consumption.
Conclusion
Triple-glazed windows at all light levels (from 95 to 20) have the best performance in reducing energy consumption. The difference in energy consumption between single-layer and three-layer windows is very large at high light levels, so that this difference reaches 43.48 at the light level of 95. This difference is reduced by reducing the amount of daylight, but still triple-layer windows are the best option in situations where high thermal control is required. Double-layer windows also perform better than single-layer windows, and at high light levels (like 95 and 90), a significant difference in energy consumption is observed. For example, at the light level of 95, the energy consumption difference between single-layer and double-layer windows is equal to 31.83. As the amount of daylighting decreases, this difference decreases, but double-layered windows are still a good option for reducing energy consumption compared to single-layered windows. Single-layer windows have an acceptable performance at low light levels (such as 20 and 25) due to reducing the need for thermal control. At these levels, the difference in energy consumption with double-layered and triple-layered windows is minimized. In order to choose the most suitable type of window, the ambient lighting level and thermal requirements must be carefully examined. Three-layer windows perform best in reducing energy consumption and are recommended for situations requiring high thermal control. Double-layered windows are also a good option and have lower energy consumption compared to single-layered windows. Finally, in conditions with lower thermal requirements and low light levels, single-layer windows can also provide acceptable performance and be economically viable.
1. باقری اسفه، حامد، و شهریار، مصطفی. (1398). تأثیر استفاده از گازهای مختلف در پنجرههای چندجداره بهمنظور کاهش تلفات حرارتی ساختمان. مهندسی مکانیک مدرس، 19(6)، 1409-1416. http://dorl.net/dor/20.1001.1.10275940.1398.19.6.24.8
2. زاهدی، محمدمهدی، و نونژاد، نرگس. (1403). بررسی شاخصهای سیستم حملونقل پایدار شهری در جهت ارتقاء فضاهای شهری (مورد مطالعه: محله ستارخان شهر تهران). معماری و محیط پایدار، 2(5)، 49-69. https://sanad.iau.ir/Journal/jsae/Article/1121827
3. شاعری، جلیل؛وکیلینژاد، رزا، و یعقوبی، محمود. (1398). تأثیر نوع گازهای میانی پنجرههای دو و سهجداره بر بار سرمایش و گرمایش ساختمانهای اداری در اقلیم گرم و مرطوب، گرم و خشک و سرد ایران. معماری و شهرسازی ایران، 10(2)،211-225. https://doi.org/10.30475/isau.2020.103683
4. عوضعلیپور حقیقتپرست، شکوفه؛ تقیزاده، یزدان، و ذبیحی، حسین. (1398). طراحی الگوی بومی در اقلیم گرم و خشک جهت کاهش مصرف انرژی در بخش مسکن (مطالعه موردی: شهر یزد). علوم و تکنولوژی محیط زیست، 3(21)، 227-236. https://doi.org/10.22034/jest.2019.14554
5. فتحعلیان، افشین، و کارگر شریفآباد، هادی. (1396). بررسی تأثیر تعویض پنجره با شیشههای دوجداره بجای تکجداره در ساختمان اداری در اقلیم سمنان به کمک نرمافزار دیزاین بیلدر. نشریه مهندسی مکانیک و ارتعاشات، 8(4)، 14-19. https://sanad.iau.ir/fa/Article/934265?FullText=FullText
6. غفاری جباری، شهلا.، و صالح، الهام. (1392). راهکارهای طراحی مسکن در بهینهسازی انرژی تهران. فصلنامه پژوهشهای سیاست و برنامهریزی انرژی، 1(1)، 115-132. https://epprjournal.ir/browse.php?a_code=A-10-2-6&sid=1&slc_lang=fa
7. ملکاحمدی، سینا؛ ماجدی، حمید و لببزاده، راضیه. (1403). بهینهسازی انرژی در فصول سرد و گرم با استفاده از دیوار ترومب در ساختمانهای اداری. مجله معماری پایدار و محیط زیست، 2(2)، 1-14. https://sanad.iau.ir/journal/jsae/Article/1105352
8. نظربلند، نازیلا؛، غیایی، محمد مهدی و مافی، مصطفی. (1403). کاهش مصرف انرژی از طریق بهینهسازی پردهها در ساختمانهای مسکونی بلندمرتبه با الهام از نورگیرهای ساختمانهای سنتی شیراز. مطالعات هنر اسلامی، 18(42)، 394-408. https://dor.isc.ac/dor/20.1001.1.1735708.1400.18.42.25.6
9. وهابی، ویدا، و مهدوینیا، مجتبی. (1397). تأثیر ویژگیهای کالبدی پوششهای محافظ پنجره بر عملکرد حرارتی ساختمانهای مسکونی شهر تهران. معماری و شهرسازی ایران (JIAU)، 9(1)، 75-90. https://doi.org/10.30475/isau.2018.68581
10. هاشمی، فاطمه، و حیدری، شاهین. (1391). بهینهسازی مصرف انرژی در ساختمانهای مسکونی اقلیم سرد (نمونه موردی: شهر اردبیل). صفه، 22(1)، 75-86.
11. Ahmed Emad Ahmed, Mahmood Sh. Suwaed, Ahmed Mohammed Shakir, Ahmed Ghareeb, (2023), The impact of window orientation, glazing, and window-to-wall ratio on the heating and cooling energy of an office building: The case of hot and semi-arid climate, Journal of Engineering Research https://doi.org/10.1016/j.jer.2023.10.034
12. Edward Field, Aritra Ghosh, Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK, Energy, Volume 283, 2023 https://doi.org/10.1016/j.energy.2023.128999
13. Yueping Fang, Trevor J. Hyde, Farid Arya, Neil Hewitt, Ruzhu Wang, Yanjun Dai, Enhancing the thermal performance of triple vacuum glazing with low-emittance coatings, Energy and Buildings, Volume 97, 2015, Pages 186-195, https://doi.org/10.1016/j.enbuild.2015.04.006.
14. H. Manz, (2008), On minimizing heat transport in architectural glazing, enew Energy, vol. 33: 119-128. https://doi.org/10.1016/j.renene.2007.01.007
15. Ignacio Acosta, Miguel Ángel Campano, Juan Francisco Molina, (2016), Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces, Applied Energy, Volume 168, Pages 493-506. https://doi.org/10.1016/j.apenergy.2016.02.005
16. M.S. Söylemez, (2009), Thermo economical optimization of number of panes for windows, Journal of Energy Engineering, ASCE 135, 21-24
17. M. Arıcı, H. Karabay, M. Kan, (2015), Flow and heat transfer in double, iple and quadruple pane windows, Energy Build, vol. 86: 394-402. https://doi.org/10.1016/j.enbuild.2014.10.043
18. Pilechiha, P., Bayat, M., & Ghasemi Nasab, M., (2021). Energy Optimization of Double Glazed Window Parameters in Hot and Arid Climate (Case Study: the Southern Front of an Office Building in Tehran). Hoviateshahr, 15(47 ), 5-14. SID. https://sid.ir/paper/951410/en.
19. Saboor Shaik, Venkata Ramana Maduru, Gorantla Kirankumar, Müslüm Arıcı, Aritra Ghosh, Karolos J. Kontoleon, Asif Afzal, (2022), Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows, Energy, Volume 259. https://doi.org/10.1016/j.energy.2022.124898
20. Tafakkori, R., Fattahi, A., (2021), Introducing novel configurations for double-glazed windows with lower energy loss, Sustainable Energy Technologies and Assessments, Volume 43. https://doi.org/10.1016/j.seta.2020.100919
21. Washim Akram,M , M. Hasannuzaman, Erdem Cuce, Pinar Mert Cuce, (2023), Global technological advancement and challenges of glazed window, facade system and vertical greenery-based energy savings in buildings: A comprehensive review, Energy and Built Environment, Volume 4, Issue 2 , Pages 206-226. https://doi.org/10.1016/j.enbenv.2021.11.003
22. Xiaosong Su, Ling Zhang, Zhongbing Liu, (2023), Daylighting and energy performance of the combination of optical fiber based translucent concrete walls and windows, Journal of Building Engineering, Volume 67. https://doi.org/10.1016/j.jobe.2023.105959
23. Xinpeng Yang, Dong Li, Ruitong Yang, Yuxin Ma, Xiangyu Tong, Yangyang Wu, Müslüm Arıcı, (2023), Comprehensive performance evaluation of double-glazed windows containing hybrid nanoparticle-enhanced phase change material, Applied Thermal Engineering, Volume 223, https://doi.org/10.1016/j.applthermaleng.2023.119976.