تأثیر هشت هفته تمرین بر شاخص نروتروفیک مشتق از مغز و مقاومت به انسولین زنان چاق مبتلا به دیابت نوع 2
محورهای موضوعی : اثر فعالیت بدنی بر بیماری ها
بهمن حسنوند
1
*
,
فیروز شرفی دهرحم
2
,
فاطمه ابراهیمی
3
1 - دانشگاه آزاد اسلامی واحد خرم آباداستادیار، گروه تربیتبدنی، دانشکده ادبیات و علوم انسانی
2 - گروه تربیتبدنی و علوم ورزشی ، دانشکده ادبیات و علوم انسانی، دانشگاه آزاد اسلامی، واحد خرمآباد، خرمآباد، ایران
3 - کارشناسی ارشد فیزیولوژی ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه آزاد اسلامی، واحد خرمآباد، خرمآباد، ایران
کلید واژه: تمرین مقاومتی, نروتروفیک مشتق از مغز, مقاومت به انسولین, چاقی, دیابت,
چکیده مقاله :
زمینه و هدف: پژوهش حاضر باهدف مقایسه تأثیر هشت هفته تمرین مقاومتی بر شاخص نروتروفیک مشتق از مغز و مقاومت به انسولین زنان چاق مبتلا به دیابت نوع 2 شهر نورآباد انجام شد.مواد و روشها: آزمودنیهای این تحقیق نیمه تجربی شامل 20 زن مبتلا به دیابت نوع 2 (با میانگین سنی 8/3 ± 6/42 سال) بود که به روش هدفمند و در دسترس انتخاب و بهطور تصادفی به دو گروه 10 نفری تمرین مقاومتی و گروه کنترل تقسیم شدند. مداخله تمرینات مقاومتی شامل 8 هفته (3 جلسه در هفته) تمرینات پرس سینه، فلکشن ساق پا، اکستنشن ساق پا، سیم کش از جلو و دراز و نشست کرانچ بود. 48 ساعت قبل و 48 ساعت پس از آخرین جلسه تمرینات، از آزمودنی های دو گروه خون گیری به منظور ارزیابی شاخص نروتروفیک مشتق از مغز و مقاومت به انسولین گرفته شد. تجزیهوتحلیل دادهها با استفاده از آزمون t وابستهانجام شد.نتایج: نتایج نشان داد تمرینات مقاومتی باعث افزایش معنادار در میزان نوتروفیک مشتق از مغز (001/0=P)، و کاهش معنادار در میزان مقاومت به انسولین (001/0=P) در گروه تمرینی شد..
نتیجه گیری: تمرینات مقاومتی موجب افزایش BDNF و درنتیجه کاهش عوارض عصبی در بیماران مبتلا به دیابت نوع 2 شده است
Background and Purpose: The present study was conducted to compare the effect of eight weeks of resistance training on brain-derived neurotrophic index and insulin resistance in obese women with type 2 diabetes in Noor Abad city.Materials and Methods: The subjects of this quasi-experimental study included 20 women with type 2 diabetes (mean age 42.6 ± 3.8 years) who were selected purposively and were randomly divided into two groups of 10: resistance training and control group. 48 hours before and 48 hours after the last training session, blood samples were taken from the subjects in both groups to assess brain-derived neurotrophic index and insulin resistance. Data analysis was performed using a paired t-test.Results: The results showed that resistance training significantly increased brain-derived neurotrophic factor (P=0.001) and significantly decreased insulin resistance (P=0.001) in the training group.Conclusion: Resistance training increased BDNF and consequently reduced neurological complications in patients with type 2 diabetes
1. Faria, M.C.; Gonçalves, G.S.; Rocha, N.P.; Moraes, E.N.; Bicalho, M.A.; Cintra, M.T.G.; de Paula, J.J.; de Miranda, L.F.J.R.; de Souza Ferreira, A.C.; Teixeira, A.L. 2014. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J. Psychiatr. Res., 53, 166–172
. 2. Cechova, K.; Andel, R.; Angelucci, F.; Chmatalova, Z.; Markova, H.; Laczó, J.; Vyhnalek, M.; Matoska, V.; Kaplan, V.; Nedelska, Z. 2020. Impact of APOE and BDNF Val66Met Gene Polymorphisms on Cognitive Functions in Patients with Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis., 73, 247–257
. 3. Weinstein, G., Beiser, A. S., Choi, S. H., Preis, S. R., Chen, T. C., Vorgas, D., et al. 2014. Serum brainderived neurotrophic factor and the risk for dementia: the framingham heart study. JAMA Neurol. 71, 55– 61. doi: 10.1001/jamaneurol..4781
. 4. Donyaei, A., Kiani, E., Bahrololoum, H., & Moser, O. 2023. Effect of combined aerobic–resistance training and subsequent detraining on brain‐derived neurotrophic factor (BDNF) and depression in women with type 2 diabetes mellitus: A randomized controlled trial. Diabetic Medicine, e15188
. 5. Benarroch, E. E. 2015. Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology, 84(16), 1693-1704
. 6. Zimbone, S., Monaco, I., Giani, F., Pandini, G., Copani, A. G., Giuffrida, M. L., et al. 2018. Amyloid beta monomers regulate cyclic adenosine monophosphate response element binding protein functions by activating type-1 insulin-like growth factor receptors in neuronal cells. Aging Cell 17:e12684
. 7. Zhou, D., Zhang, Z., Liu, L., Li, C., Li, M., Yu, H., et al. 2017. The antidepressant-like effects of biperiden may involve BDNF/TrkB signaling-mediated BICC1 expression in the hippocampus and prefrontal cortex of mice. Pharmacol. Biochem. Behav. 157, 47–57
. 8. Zheng, Z., Sabirzhanov, B., and Keifer, J. 2010. Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J. Biol. Chem. 285, 34708–34717
. 9. Ram, S. Y., Gautier, J. F., & Chon, S. 2021. Assessment of insulin secretion and insulin resistance in human. Diabetes & metabolism journal, 45(5), 641
. 10. Yueqing Xu, Wang C, Cai K, Qiao M, Chen Sh. 2016. The effect of exercise on balance function of patients with type 2 diabetes. Nursing J; 5(1): 1-4
. 11
. Forouhi, N. G., & Wareham, N. J. 2019. Epidemiology of diabetes. Medicine, 47(1), 22-27. 12. Getzmann, S.; Gajewski, P.D.; Hengstler, J.G.; Falkenstein, M.; Beste, C. 2013. BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly—Evidence from auditory distraction. Neuroimage, 64, 290–298
. 13. Hatfield, D. L., Kraemer, W. J., Volek, J. S., Nindl, B. C., Caldwell, L. K., Vingren, J. L., ... & Hymer, W. C. 2021. Hormonal stress responses of growth hormone and insulin-like growth factor-I in highly resistance trained women and men. Growth Hormone & IGF Research, 59, 101407
. 14. Salehi I, Farajnia S, Mohammadi M, Sabouri Ghannad S. 2010. The pattern of brain-derived neurotrophic factor gene expression in the hippocampus of diabetic rats. Iranian J Basic Med Sci.; 13(3): 146-53
. 15. Rafiei S, Bazyar Y, Edalatmanesh MA. 2016. Effect of gallic acid and endurance exercise training on bdnf in a model of hippocampal degeneration. Shefaye Khatam; 4(1): 1-6
. 16. Vosadi E, Ravasi AA, Choobine S, Barzegar H, Borjianfard M. 2013. Effect of endurance training and omega-3 supplementation in brain-derived neurotrophic factor (BDNF) in male adult rat hippocampus. RJMS; 20(111): 50-7#. 17. Fallah Mohammadi Z, Nazari H. 2013. The effect of 4 weeks plyometric training on serum concentration of brain derived neurotrophic factor of active mal. Sport Physiol; 20(5): 29-38#. 18. Hosseini A, Parno A, Karimi A, Hosseini B. 2015. The effect of 4 weeks resistance training on plasma levels of brain derived neurotrophic factor of rats. Biol Sci Appl Res Sport; 6(3): 42-51#. 19. Babaei P, Damirchi A, Azali Alamdari K. 2013. Effects of endurance training and detraining on serum bdnf and memory performance in middle aged males with metabolic syndrome. Iranian J Endocrinology Met; 15(2): 132-42#. 20. Berbudi, A., Rahmadika, N., Tjahjadi, A. I., & Ruslami, R. 2020. Type 2 diabetes and its impact on the immune system. Current diabetes reviews, 16(5), 442#. 21. Watts, A.; Andrews, S.J.; Anstey, K.J. Sex differences in the impact of BDNF genotype on the longitudinal relationship between physical activity and cognitive performance. Gerontology 2018, 64, 361–372#. 22. Wu, H., & Ballantyne, C. M. 2020. Metabolic inflammation and insulin resistance in obesity. Circulation research, 126(11), 1549-1564#. 23. Fernández-Rodríguez, R., Álvarez-Bueno, C., Martínez-Ortega, I. A., Martínez-Vizcaíno, V., Mesas, A. E., & Notario-Pacheco, B. 2022. Immediate effect of high-intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. Journal of sport and health science, 11(3), 367-375#. 24. García-Suárez, P. C., Rentería, I., Plaisance, E. P., Moncada-Jiménez, J., & Jiménez-Maldonado, A. 2021. The effects of interval training on peripheral brain derived neurotrophic factor (BDNF) in young adults: A systematic review and meta-analysis. Scientific reports, 11(1), 8937#. 25. Małczyńska-Sims, P., Chalimoniuk, M., & Sułek, A. 2020. The effect of endurance training on brain-derived neurotrophic factor and inflammatory markers in healthy people and parkinson's disease. A narrative review. Frontiers in Physiology, 11, 578981#. 26. Ohko, H., Umemoto, Y., Sakurai, Y., Araki, S., Kojima, D., Kamijo, Y., ... & Tajima, F. 2021. The effects of endurance exercise combined with high-temperature head-out water immersion on serum concentration of brain-derived neurotrophic factor in healthy young men. International Journal of Hyperthermia, 38(1), 1077-1085#. 27. Liang, Z., Zhang, Z., Qi, S., Yu, J., & Wei, Z. 2023. Effects of a single bout of endurance exercise on brain-derived neurotrophic factor in humans: a systematic review and meta-analysis of randomized controlled trials. Biology, 12(1), 126#. 28. Whillier, S. 2020. Exercise and insulin resistance. Physical exercise for human health, 137-150. 29. Saeidi, M., Mogharnasi, M., Afzalpour, M. E., Bijeh, N., & Vieira, A. 2023. Comparison of the effect of aerobic, resistance and combined training on some inflammatory markers in obese men. Science & Sports, 38(5-6), 593-601#. 30. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. 2008. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation.; 118(4):346-54#. 31. Bergman, B. C., & Goodpaster, B. H. 2020. Exercise and muscle lipid content, composition, and localization: influence on muscle insulin sensitivity. Diabetes, 69(5), 848-858#. 32. Mandelman, S.D.; Grigorenko, E.L. 2012. BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genes Brain Behav., 11, 127–136#. 33. Da Silva, A. A., do Carmo, J. M., Li, X., Wang, Z., Mouton, A. J., & Hall, J. E. 2020. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Canadian Journal of Cardiology, 36(5), 671-682#.