تاثیر نانو دی اکسید سلنیوم بر عملکرد گلدهی و ویژگی های بیوشیمیایی گیاه سرخارگل (Echinacea purpurea L) در شرایط تنش شوری
محورهای موضوعی : مجله گیاهان زینتی
سارا مسعودی
1
,
مرضیه قنبری جهرمی
2
*
,
مرجان دیانت
3
1 - گروه علوم و مهندسی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه علوم و مهندسی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه علوم و مهندسی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: آنتیاکسیدانها, گل, مورفومتریک, نانوسلنیوم, اکسیداتیو.,
چکیده مقاله :
سرخارگل با گلهای زیبا و چشمنواز خود، یکی از گیاهان زینتی محبوب در طراحی فضای سبز است. سرخارگل به دلیل خواص دارویی و درمانی خود، ارزش افزودهای برای فضای سبز ایجاد میکند و به عنوان یک گیاه چندمنظوره در طراحی باغهای گیاهان دارویی مورد استفاده قرار می گیرد. تنش شوری به عنوان یکی از مهمترین تنشهای غیرزیستی، تأثیرات منفی قابل توجهی بر رشد و عملکرد گیاهان دارد. این مطالعه به بررسی اثرات تنش شوری و کاربرد نانوذره دیاکسید سلنیوم بر ویژگی های رشدی و صفات بیوشیمیایی گیاه سرخارگل (Echinacea purpurea L.) پرداخت. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه سطح تنش شوری (صفر، 50 و 100 میلیمولار NaCl) و سه سطح نانوذره دیاکسید سلنیوم (صفر، 50 و 100 میلیگرم در لیتر) انجام شد. نتایج نشان داد که تنش شوری باعث کاهش معنیدار در صفات مورفوفیزیولوژیک مانند تعداد برگ، تعداد شاخه فرعی، تعداد گل، قطر طبق گل، طول دمگل، طول عمر گل و وزن تر اندام هوایی شد. همچنین، تنش شوری باعث کاهش محتوای کلروفیل a و b، کاروتنوئید و آنتوسیانین گلبرگ گردید. با این حال، کاربرد نانوذره دیاکسید سلنیوم به طور معنیداری اثرات منفی تنش شوری را کاهش داد و باعث بهبود رشد رویشی و زایشی شد. بهطور خاص، بیشترین بهبود در صفات مورفوفیزیولوژیک و بیوشیمیایی در تیمار شاهد (عدم تنش شوری) با کاربرد 100 میلیگرم نانوذره دیاکسید سلنیوم مشاهده شد. فعالیت آنزیمهای آنتیاکسیدانی مانند کاتالاز و سوپراکسید دیسموتاز نیز تحت تأثیر تنش شوری و نانوذره قرار گرفتند، بهطوری که بیشترین فعالیت این آنزیمها در تیمار تنش شوری شدید با کاربرد 100 میلیگرم نانوذره دیاکسید سلنیوم ثبت شد. در نهایت، نتایج این مطالعه نشان داد که نانوذره دیاکسید سلنیوم میتواند به عنوان یک راهکار مؤثر برای کاهش اثرات منفی تنش شوری و بهبود رشد و عملکرد گیاه سرخارگل مورد استفاده قرار گیرد.
Echinacea purpurea L., a valuable ornamental and medicinal plant, is widely used in landscape design and therapeutic gardens; however, its growth and physiological performance are adversely affected by salinity stress. This study evaluated the potential of selenium nanoparticles (Se NPs) to mitigate salinity-induced damage in E. purpurea using a factorial experiment arranged in a completely randomized design with three salinity levels (0, 50, and 100 mM NaCl) and three Se NP concentrations (0, 50, and 100 mg/L). Salinity stress significantly reduced morphophysiological traits, including leaf number, lateral branches, flower number, flower head diameter, peduncle length, flower longevity, and aerial fresh weight, as well as photosynthetic pigments (chlorophyll a, b, and carotenoids) and anthocyanin content. However, Se NP application, particularly at 100 mg/L, effectively counteracted these detrimental effects, enhancing vegetative and reproductive growth. Antioxidant enzyme activities (catalase and superoxide dismutase) were highest under severe salinity (100 mM NaCl) combined with 100 mg/L Se NPs, indicating their role in stress amelioration. The findings demonstrate that Se NPs can serve as a promising strategy to improve E. purpurea's resilience to salinity stress, optimizing its ornamental and medicinal value in saline-affected environments.
Abbasi, B., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S. and Mahmood, T. 2020a. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 10 (1): 38. https://doi.org/10.3390/biom10010038
Abbasi, B.A., Iqbal, J., Zahra, S.A., Shahbaz, A., Kanwal, S. and Rabbani, A. 2020b. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus triquetra leaf extract. Materials Research Express, 6 (12): 1250e7.
Adeli, H., Kalateh Jari, S. and Diyanat, M. 2024. Effect of salicylic acid and sodium selenite on growth and photochemical attributes of coneflower (Echinacea angustifolia) under salinity stress. Journal of Crops Improvement, 26 (4): 925-948. https://doi.org/10.22059/jci.2024.366323.2859
Ahmad, Z., Anjum, S., Skalicky, M., Waraich, E.A., Muhammad Sabir Tariq, R., Ayub, M.A., Hossain, A., Hassan, M.M., Brestic, M., Sohidul Islam, M. and Habib-Ur-Rahman, M. 2021. Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules, 26 (6): 1699. https://doi.org/10.3390/molecules26061699
Amerian, M., Khorami Vafa, M., Palangi, A., Gohari, G. and Ntatsi, G. 2024. The effect of different levels of urea and sodium selenate on the morphophysiological characteristics of garlic (Allium sativum L.). Scientia Horticulturae, 337: 113469. https://doi.org/10.1016/j.scienta.2024.113469
Amini, Z. 2014. Effects of water deficit on proline content and activity of antioxidant enzymes among three olive (Olea europaea L.) cultivars. Journal of Plant Research (Iranian Journal of Biology), 27(2): 156-167.
Amirabad, S.A., Behtash, F. and Vafaee, Y. 2020. Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environmental Science and Pollution Research, 27: 12476–12490.
Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Journal of Agronomy, 23: 112-121.
Arora, M., Saxena, P., Abdin, M. and Varma, A. 2020. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis, 80: 61–73. https://doi.org/10.1007/s13199-019-00656-w
Atta, K., Mondal, S., Gorai, S., Singh, A.P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D.J., Mondal, S., Bhattacharya, S., Jha, U.C. and Jespersen, D. 2023. Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14: 1241736.
Burlou-Nagy, C., Bănică, F., Jurca, T., Vicas, L.G., Marian, E., Muresan, M.E., Bácskay, I., Kiss, R., Fehér, P. and Pallag, A. 2022. Echinacea purpurea (L.) Moench: Biological and pharmacological properties—A review. Plants, 11(9): 1244. https://doi.org/10.3390/plants11091244
Dobrange, E., Peshev, D., Loedolff, B. and Van den Ende, W. 2019. Fructans as immunomodulatory and antiviral agents: The case of Echinacea. Biomolecules, 9: 615. https://doi.org/10.3390/biom9100615
El Haddad, N., Choukri, H., Ghanem, M.E., Smouni, A., Mentag, R., Rajendran, K., Hejjaoui, K., Maalouf, F. and Kumar, S. 2022. High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in Lentil. Plants, 11: 95. https://doi.org/10.3390/plants11010095
El-Ramady, H., Abdalla, N., Taha, H.S., Alshaal, T., El-Henawy, A., Faizy, S.E.D.A. and Shams, M.S. 2016. Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14(1): 123-147. https://doi.org/10.1007/s10311-015-0535-1
Ghasemian, S., Masoudian, N., Saeid Nematpour, F. and Safipour Afshar, A. 2021. Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia, 76(10): 2879-2888.
Ghutke, T.D., Parvin, K., Rashida Banu, A.M., Bansal, S., Srivastava, A., Rout, S. and Ramzan, U. 2023. A comprehensive review on the therapeutic properties of medicinal plants. Acta Traditional Medicine, V2i01: 13–18.
Hashempoor, J., Asadi-Sanam, S., Mirza, M. and Ghanbari Jahromi, M. 2022. The effect of different fertilizer sources on soil nutritional status and physiological and biochemical parameters of coneflower (Echinacea purpurea L.). Communications in Soil Science and Plant Analysis, 53: 1246–1260.
Hashempour, J., Asadi-Sanam, S., Mirza, M. and Ghanbari Jahromi, M. 2023. Effects of nutritional treatments on quantitative and qualitative yield of Echinaceae purpurea L.. Iranian Journal of Medicinal and Aromatic Plants Research, 39(3): 315-335. https://doi.org/10.22092/ijmapr.2022.357096.3110
Javadi, F., Kalatejari, S., Diyanat, M. and Asgari, F. 2021. The effect of sodium selenate application method on ornamental violet (Viola wittrickiana cv. Queen Yellow Bee) under salinity stress. Plant Process and Function, 10(42): 211-228.
Jones, G.D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S.P. and Winkel, L.H.E. 2017. Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11): 2848-2853. https://doi.org/10.1073/pnas.1611576114
Kesawat, M.S., Satheesh, N., Kherawat, B.S., Kumar, A., Kim, H.U., Chung, S.M. and Kumar, M. 2023. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules-current perspectives and future directions. Plants (Basel), 12(4): 864. https://doi.org/10.3390/plants12040864
Kumar, A., Gupta, K., Dixit, S., Mishra, K. and Srivastava, S. 2018. A review on positive and negative impacts of nanotechnology in agriculture. International Journal of Environmental Science and Technology, 16: 2175-2184.
Luck, H. 1974. Catalase. In: J. Bergmeyer and M. Grabi (Eds.), Methods of enzymatic analysis (2: 885–890). Academic Press.
Lungoci, C., Motrescu, I., Filipov, F., Rimbu, C.M., Jitareanu, C.D., Ghitau, C.S., Puiu, I. and Robu, T. 2023. Salinity stress influences the main biochemical parameters of Nepeta racemosa Lam. Plants, 12: 583. https://doi.org/10.3390/plants12030583
Nadernejad, N., Ahmadimoghadam, A., Hosseinifard, S.J. and Poorseyedi, S. 2013. Evaluation of PAL activity, phenolic and flavonoid contents in three pistachio (Pistacia vera L.) cultivars grafted onto three different rootstocks. Journal of Stress Physiology and Biochemistry, 9: 84-97.
Oraghi Ardebili, N., Iranbakhsh, A. and Oraghi Ardebili, Z. 2019. Efficiency of selenium and salicylic acid protection against salinity in soybean. Plant Physiology, 9: 2727–2738.
Rady, M.M., Belal, H.E., Gadallah, F.M. and Semida, W.M. 2020. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266: 109290.
Razi, K. and Muneer, S. 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41: 669–691.
Sabra, A., Daayf, F. and Renault, S. 2012. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae, 135: 23-31.
Schiavon, M. and Pilon-Smits, E.A.H. 2019. Selenium biofortification and phytoremediation phyto technologies: A review. Journal of Environmental Quality, 48 (1): 1-15.
Shahid, M., Niazi, N.K., Khalid, S., Murtaza, B., Bibi, I. and Rashid, M.I. 2019. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 244: 486-501.
Shahid, M.A., Balal, R.M., Khan, N., Zotarelli, L., Liu, G.D., Sarkhosh, A., Fernandez-Zapata, J.C., Nicolas, J.J. and Garcia-Sanchez, F. 2019. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicology and Environmental Safety, 180: 588–599.
Soleymanzadeh, R., Iranbakhsh, A., Habibi, G. and Oraghi Ardebili, Z. 2020. Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biologica Cracoviensia Series Botanica, 62: 33–42.
Sun, T., Powers, J.R. and Tang, J. 2007. Evaluation of the antioxidant activity of Asparagus, broccoli and their juices. Food Chemistry, 105: 101-106.
Tabrizi Dooz, R., Kalateh Jari, S., Naderi, D., Ghanbari Jahromi, M. and Asadi Gharneh, H.A. 2023. Role of foliar application of sodium nitroprusside on induction of antioxidant enzyme activities of narcissus (Narcissus tazetta L.) in response to saline water irrigation. Plant Process and Function, 12(54): 73-90.
Taha, R.S., Seleiman, M.F., Shami, A., Alhammad, B.A. and Mahdi, A.H. 2021. Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants, 10(6):1040. https://doi.org/10.3390/plants10061040
Tovignan, T.K., Adoukonou-Sagbadja, H., Diatta, C., Clément-Vidal, A., Soutiras, A., Cisse, N. and Luquet, D. 2020. Terminal drought effect on sugar partitioning and metabolism is modulated by leaf stay-green and panicle size in the stem of sweet sorghum (Sorghum bicolor L. Moench). CABI Agriculture and Bioscience, 1 (4): 1-11. https://doi.org/10.1186/s43170-020-00003-w
Wang, C., Cheng, T., Liu, H., Zhou, F., Zhang, J., Zhang, M., Liu, X., Shi, W. and Cao, T. 2021. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. Journal of Environmental Sciences, 103: 336–346.
White, P.J. 2020. Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA) - General Subjects, 1864(1): 129405. https://doi.org/10.1016/j.bbagen.2019.07.012
Yasir, T.A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M.I.A., Sarwar, N., Mubeen, K., Aziz, M., Hassan, M.M., Hassan, F.A.S., Brestic, M., Zivcak, M., Hossain, A., Abdelhamid, M.T. and Skalická, M. 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules, 26: 2576.
Yildiz, M., Poyraz, I., Cavdar, A., Ozgen, Y. and Beyaz, R. 2020. Plant Breeding - Current and Future Views. IntechOpen. Available at: http://dx.doi.org/10.5772/intechopen.93920
Zahedi, S.M., Karimi, M. and Teixeira da Silva, J.A. 2020. The use of nanotechnology to increase quality and yield of fruit crops. Journal of the Science of Food and Agriculture, 100: 25-31.
Zavareh, M., Asadi-Sanam, S., Pirdashti, H., Sefidcon, F. and Nematzadeh, G. 2015. Evaluation of biochemical and physiological responses of purple coneflower (Echinacea purpurea L.) medicinal plant to low temperature stress. Plant Process and Function, 4(12): 11-28.