Investigation and Simulation of Recombination Models in Virtual Organic Solar Cell
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Basic Science , Farhangian university, Tehran, Iran
Keywords: bimolecular recombination, organic solar cells, efficiency of solar cells, Langevin's recombination,
Abstract :
As fossil fuels cause environmental problems and begin to become depleted, research into developing renewable energy is on the rise. As fossil fuels begin to deplete and the cost of energy rises, there is more and more need for a renewable, clean energy source. One such possible alternative are OSC . Experimental results have reported 8.3% efficiency in lab tests. The development of OSC efficiency is an important step in reducing our carbon footprint. The absorption of photons is not a problem in most OSC because normally 96% of light is absorbed and organic semiconductors have high absorption coefficients even for very thin specimen. After the photons are absorbed, an exciton consisting of a hole and an electron with a binding energy of 0.1 - 1.4 eV is formed. In this article, three different models for the bimolecular recombination of solar cells are explored and a simulation is run and compared to experimental results.
[1] C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, Z. He, Modeling and simulation
of bulk heterojunction polymer solar cells, Sol. Energy Mater. Sol. Cells,
127 (2019) 67–86. Available: https://doi.org/10.1016/j.solmat.2014.04.009
[2] T. Tromholt, M. Manceau, M. Helgesen, J. E. Carle, F. C. Krebs,
Degradation of semiconducting polymers by concentrated sunlight, Sol.
Energy Mater. Sol. Cells, 95 (2018) 130-142.
Available:https://www.sciencedirect.com/science/article/pii/S09270281000
5465
[3] Y. Zhou, J. Pei, Q. Dong, X. Sun, Y. Liu, W. Tian, Donor- Acceptor
Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar
Cells, J. Phys. Chem. C, 113 (2019) 78-82.
Available: https://doi.org/ 10.102/jp811522p
[4] Szmytokowski, J. "Analysis of the image force effects on the recombination
at the donor-acceptor interface in organic bulk heterojunction solar cells."
Chemical Physics Letters, 2019: 123-125.
Available: https://doi.org/ 10.1016/j.cplett.2009.01.043
[5] L. Koster, V. Mihailetchi, P. Blom. "Bimolecular recombination in
polymer/fullerene bulk heterojunction solar cells." Applied Physics Letters,
2020: 052104. Available: https://doi.org/ 10.1063/1.2170424
[6] Moliton, Andre, and Jean-Michel Nunzi. "How to model the behaviour of
organic photovoltic cells." Polymer International, 2006: 583-600.
Available: https://doi.org/ 10.1002/pi.2038
[7] Heeger, Alan J. "Nobel Lecture: Semiconducting and metallic polymers: The
fourth generation of polymeric materials." Reviews of Modern Physics,
2001: 681-700. Available: https://doi.org/ 10.1103/RevModPhys.73.681
[8] A. Mahmoudloo , S. Ahmadi , Influence of the temperature on the charge
transport and recombination profile in organic bulk heterojunction solar
cells: a drift-diffusion study, J. Applide Physics A,119(4), (2015) 1523-
[9] D. Rezzonico, B. Perucco, E. Knapp, R. Hausermann, N. A. Reinke, F.
Muller, B. Ruhstaller, Numerical analysis of exciton dynamics in organic
Investigation and Simulation of Recombination Models in Virtual Organic Solar Cells
light-emitting devices and solar cells, J. of Photonics for Energy, 1 (2011)
110-119. Available: https://doi.org/10.1117/1.3528045
[10] M. Jafari, Electronic transmission wave function of disordered graphene by
direct method and green function method. Journal of Optoelectrical Nano
Structuers.2. 2. (2016) 57-68.
Available: http://jopn.miau.ac.ir/article_2049.html
[11] J. D. Kotlarski, L. J. A. Koster, P. W. M. Blom, M. Lenes, and L. H. Slooff,
Combined optical and electrical modeling of polymer:fullerene bulk
heterojunction solar cells, J. Appl. Phys. 103 (2019) 845-852.
Available: https://doi.org/10.1063/1.2905243
[12] M. Hasani , R. Chegell . Electronic and optical properties of the Graphene
and Boron Nitride nanoribbons in presence of the electric field. Journal of
Optoelectrical Nano Structuers.5.2 (2020)49-64.
Available: http://jopn.miau.ac.ir/article_4218.html
[13] A. H. Fallahpour, A. Gagliardi, F. Santoni, D. Gentilini, A. Zampetti, M.
Auf der Maur, and A. Di Carlo Modeling and simulation of energetically
disordered organic solar cells, J. Appl. Phys., 103(2014) 184-190.
Available: https://doi.org/10.1063/1.4901065
[14] R. Yahyazadeh, Z. Hashempour, Effect of Hyrostatic pressure on optical
Absorption coeffivient of InGaN/GaN of Multiple Quantum well solar
cells, Journal of optoelectronical Nano structures,6.2 (2021) 1-22
Available: https://doi.org/10.304951JOPN.2021.27941.1221
[15] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. M. Blom, Device
model for the operation of polymer/fullerene bulk heterojunction solar
cells, Phys. Rev. B, 72 (2005) 852-859.
Available:https://doi.org/10.1103/PhysRevB.72.085205
[16] J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, and J. M. Frost, Modeling
charge transport in organic photovoltaic materials, Acc. Chem. Res., 42
(2009) 176-183. Available:https://doi.org/10.1021/ar900119f
[17] F. F. Stelzl, Uli Wurfel, Modeling the influence of doping on the
performance of bulk heterojunction organic solar cells: One-dimensional
effective semiconductor versus two-dimensional onor/acceptor model,
Phys. Rev. B., 86 (2018) 753-761.