Design and Modeling of a D–Shaped PCF Refractive Index Sensor Based on SPR Effect
Subject Areas :
Journal of Optoelectronical Nanostructures
Amin Sayyad Tondro
1
,
Mojtaba Sadeghi
2
*
,
Abbas Kamaly
3
,
Zahra Adelpour
4
,
Seyyed Ali Emamghorashi
5
1 - Department of Electrical Engineering, Fasa Branch, Islamic Azad University, Fasa, Iran
2 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Electrical Engineering, Fasa Branch, Islamic Azad University, Fasa, Iran
4 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
5 - Department of Electrical Engineering, Fasa Branch, Islamic Azad University, Fasa, Iran
Received: 2022-12-28
Accepted : 2023-08-20
Published : 2023-11-01
Keywords:
PCR,
Sensitivity,
REFRACTIVE INDEX,
SENSOR,
SPR,
Abstract :
Abstract:
This study introduces an efficient D-shaped sensor for refractive index (RI) sensing based on the surface plasmon resonance (SPR) phenomenon. The sensor design was examined through numerical simulations utilizing the finite element method (FEM). The calculations revealed that the proposed fiber demonstrates particular suitability for sensing within the wavelength spectrum spanning from 0.5 to 0.7μm. Our results yielded a remarkable wavelength sensitivity and substantial RI resolution of 9500 nm/RIU and 6.5 ×10–6 RIU, respectively which observed as the analyte RI ranged 1.33~1.36. Additionally, a maximum amplitude sensitivity of 215 RIU–1, accompanied by an impressive linearity of 0.99862 was acheived.
References:
An, X. Hao, S. Li, X. Zhang. D-Shaped Photonic Crystal Fiber Refractive Index Sensor Based on Surface Plasmon Resonance. Appl. Opt. [Online]. 56 (24) (2017, Aug.) 6988-6922. Available: https://doi.org/10.1364/AO.56.006988
J. Wu, S. Li, X. Wang, M. Shi, X. Feng, Y. Liu. Ultrahigh Sensitivity Refractive Index Sensor of a D-Shaped PCF Based on Surface Plasmon Resonance. Appl. Opt. [Online]. 57(15) (2018, May). 4002-4007. Available: https://doi.org/10.1364/AO.57.004002
Salehnezhad, M. Soroosh, A. Farmani. Design and Numerical Simulation of a Sensetive Plasmonic-Based Nanosensor Utilizing MoS2 Monolayer and Graphene. DRM. [Online]. 131 (2023, Jan.) 109549. Available: https://doi.org/10.1016/j.diamond.2022.109594
R. J. Azizpour, M. Soroush, N. Dalvand, Y. S. Kavian. All-Optical Ultra-Fast Graphene-Photonic Crystal Switch. Crystals. [Online]. 9 (2019, Sep.) 461. Available: https://doi.org/10.3390/cryst9090461
Abbasi, M. Soroosh, E. Namjoo. Polarization-Insensitive Temperature Sensor Based on Liquid Filled Photonic Crystal Fiber. OPTIK. [Online]. 168 (2018, Sep.) 342-347. Available: https://doi.org/10.1016/j.ijleo.2018.04.116
Tian, P. Lu, L. Chen, C. Lv, D. Liu. All–solid D–shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. [Online]. 285 (2012, March) 1550–1554. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401811013447
Ren, J. Yuan, K. Wang, B. Yan, X. Sang, C. Yu. Design of Photonic Crystal Fiber Refractive Index Sensor Based on Surface Plasmon Resonance Effect for the Dual-Wavebands Measurement. [Online]. Fiber. Integr. Opt. 40 (2020, Oct.) 263-275. Available: https://www.tandfonline.com/doi/full/10.1080/01468030.2020.1830204
Wu, S. Li, X. Wang, M. Shi, X. Feng, Y. Liu. Ultrahigh sensitivity refractive index sensor of a D–shaped PCF based on surface plasmon resonance. [Online]. Appl. Opt. 57 (2018, May) 4002–4007. Available: https://opg.optica.org/ao/abstract.cfm?uri=ao-57-15-4002
M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlasov. Engineering nonlinearities in nanoscale optical systems: Physics and applications in dispersion–engineered silicon nanophotonic wires. [Online]. Adv. Opt. Photonics, 1 (2009, Jan.) 162–235. Available: https://opg.optica.org/aop/fulltext.cfm?uri=aop-1-1-162&id=176228
N. Dash, R. Jha. On the performance of graphene–based D–shaped photonic crystal fiber biosensor using surface plasmon resonance. [Online]. Plasmonics, 10(5) (2015, Feb.) 1123–1131. Available: https://link.springer.com/article/10.1007/s11468-015-9912-7
Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, Y. Zhang. Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range. [Online]. Opt. Commun. 284 (2011, Nov.) 4161–4166. Available: https://opg.optica.org/oe/fulltext.cfm?uri=oe-19-23-22863&id=224014
Wu, Y. Song, M. Sun, Q. Wang. Simulation of High-Performance Surface Plasmon Resonance
Sensor Based on D-Shaped Dual Channel Photonic Crystal
Fiber for Temperature Sensing. [Online]. Materials. 16 (2022, Dec.) 37. Available: https://doi.org/10.3390/ma16010037
Nivedha, P. R. Babu. K. Senthilnathan, D-Shaped Plasmonic Sensor Using a Molybdenum Disulfide Doped Photonic Crystal
Fiber. [Online]. IOP Conf. Ser. Mater. Sci. Eng. 263 (2017) 5203. Available: http://doi.org/10.1088/1757-899X/263/5/052031
Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao. Sensitivity-Enhanced Surface Plasmon Resonance Sensor Utilizing a Tungsten Disulfide (WS2) Nanosheets Overlayer. [Online]. Photon. Res. 6 (2018) 485–491. Available: https://opg.optica.org/prj/abstract.cfm?uri=prj-6-6-485
Momeni, M., Javadian Sarraf, M., Khatib, F. Design of high sensitivity and high FoM refractive index biosensor based on 2D-photonic crystal. Journal of Optoelectronical Nanostructures, 2021; 6(4): 33-58. doi: 30495/jopn.2022.27033.121720.1001.1.24237361.2021.6.4.3.1
Heidary Orojloo, M., Jabbari, M., Solookinejad, G., Sohrabi, F. Design and modeling of photonic crystal Absorber by using Gold and graphene films. Journal of Optoelectronical Nanostructures, 2022; 7(2): 1-10. doi: 30495/jopn.2022.28915.123520.1001.1.24237361.2022.7.2.1.2
Bazargani, M., Gharekhanlou, B., Banihashemin, M. Investigating the Design and Simulation of a Tunable Optical Filter Based on Photonic Crystal Using Selective Optofluidic Infiltration. Journal of Optoelectronical Nanostructures, 2022; 7(4): 66-79. doi: 10.30495/jopn.2022.29582.1248
Pathak, A.K., Singh, V.K.: SPR based optical fiber refractive index sensor using silver nanowire assisted CSMFC. IEEE Photonics Technol. Lett. 32(8), 465–468 (2020)
https://opg.optica.org/aop/fulltext.cfm?uri=aop-1-1-162&id=176228
Pathak AK, Viphavakit C, Rahman BM, Singh VK. A highly sensitive SPR refractive index sensor based on microfluidic channel assisted with graphene-Ag composite nanowire. IEEE Photonics Journal. 2021 Mar 29;13(2):1-8.
https://www.tandfonline.com/doi/full/10.1080/01468030.2020.1830204
Qiu, S., Chen, Y., Xu, F., Lu, Y.: Temperature sensor based on an isopropanol–sealed photonic crystal fiber in–line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37, 863–865 (2012). https://doi.org/10.1016/j.ijleo.2018.04.116
Qiu SJ, Chen Y, Xu F, Lu YQ. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer withenhanced refractive index sensitivity. Optics letters. 2012 Mar 1;37(5):863-5. doi: 10.30495/jopn.2022.29582.1248
Okuno, Y. Saito, S. Kawata, P. Verma. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. Phys. Rev. Lett. 111, (2013) 216101. Available:10.1103/PhysRevLett.111.216101
Shahi, S. Flattening Few Mode Fiber Laser Source Based on PMF and Loop Mirror in a Ring Cavity Resonator. Journal of Optoelectronical Nanostructures, 2023; 8(1): 84-94. doi: 10.30495/jopn.2023.31308.1276
Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Mahdiraji, G.A., Yun, S.H., Adikan, F.M.: Photonic crystal fiber based plasmonic sensors. Sens. Actuat B Chem. 243, 311–325 (2017) .https://opg.optica.org/aop/fulltext.cfm?uri=aop-1-1-162&id=176228
N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J. F. Maguire, M. Green, M. D. Foster, A. P. Sokolov, High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38, (2007) 789–796. Available:10.1002/jrs.1698