Casimir effects of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Physics‎, ‎Faculty of Science‎, ‎Imam Khomeini International University‎, ‎34148‎ - ‎96818‎, ‎Ghazvin‎, ‎Iran
Keywords: Casimir entropy, Internal energy, Path integral method, Negative entropy, nano sphere,
Abstract :
Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to obtain a general relation for casimir entropy and internal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and the electromagnetic field. For this purpose, using Lagrangian and based on a perturbative approach, a series expansion in susceptibility function of the medium was obtained for the Casimir force between arbitrary shaped objects foliated in a scalar or vector fluctuating field in arbitrary dimensions. The finite temperature corrections are derived and using it, we obtain the casimir entropy and internal energy of two nano ribbons immersed in the scalar field and two nanospheres immersed in the scalar field and the electromagnetic field. The casimir entropy of two nanospheres immersed in the electromagnetic field behave differently in small interval of temperature variations. .
[1] S. Weinberg, The cosmological constant problem. Rev. Med. Phys. 61 (1989) 1.
[2] K. A. Milton, G. Romain, I. Gert-Ludwig, L. Astrid, R. Serge, Negative Casimir entropies in nanoparticle interactions. Journal of Physics: Condensed Matter. 27 (2015) 21.
[3] U. Stefan, H. Michael, I. Gert-Ludwig, A. Paulo, N. Maia, Disentangling geometric and dissipative origins of negative Casimir entropies, arXiv:1507.05891v1
[4] H. B. G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51 (1948) 793.
[5] I. E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii, General theory of vander waals' forses, sov. Phys. Usp. 4 (1961) 153.
[6] K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami, I. Brevik, S. A. Ellingsen, S. Y. Buhmann, S. Scheel, Casimir-Polder repulsion: Three-body effects. Phys. Rev. A .91 (2015) 042510.
[7] P. L. Pitaevskii, Casimir-lifshtze forces and entropy, Int. J. Mod. Phys. A. 25 (2010) 2313.
[8] T. Emig, N. Graham, R. L. Jaffre, M. Kardar, Casimir Forces between Arbitrary Compact Objects. Phys. Rev. Lett. 99, (2007) 170403.
[9] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffre, M. Kardar, Scattering theory approach to electrodynamic Casimir forces . Phys. Rev. D 80 (2009) 085021.
[10] A. Lambrecht, P. A. Maia Neto, S. Reynaud, The Casimir effect within scattering theory .New Journal of physics 8 (2006)243.
[11] K. A. Milton, J. Wagner, Exact Casimir Interaction Between Semitransparent Spheres and Cylinders. Phys. Rev. D 77, (2008) 045005.
[12] K. Milton. P. Parashar and J. Wagner, Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der Waals limit, Phys. Rev. Lett. 101 (2008) 160402.
[13] G. Ingold, S. Umrath, M. Hartmann, R. Guerout, A. Lambrecht, S. Reynaud, and K. Milton, Geometric origin of negative Casimir entropies: A scattering channel analysis, Phys. Rev. E 91 (2015) 033203 .
[14] F. Kheirandish, M. Jafari, perturbative approach to calculating the casimir force in fluctuating scalar and vector fields. Phys. Rew A. 86 (2012) 022503.
[15] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko, Thermodynamical aspects of the Casimir force between real metals at nonzero temperature. Phys. Rev. A. 65 (2002) 052113.
[16] M. Bordag, I. G. Pirozhenko, Casimir entropy for a ball in front of a plane . Phys. Rev. D. 82 (2010) 125016.
[17] P. Rodriguez-Lopez, Casimir energy and entropy in the sphere-sphere geometry. Phys. Rev. B. 84 (2011) 075431.
[18] B. Geyer, On thermal Casimir force between real metals. Journal of Physics: Conference Series, 1 (2009)
[19] G. L. Ingold, P. Hanggi, P. Talker, Specific heat anomalies of open quantum systems. Phys.Rev. E. 79 (2009) 061105.
[20] F. Kheirandish, S. Salimi., Quantum field theory in the presence of a medium Green’s function expansions. Phys. Rev. A. 84 (2011) 062122.
[21] W. Greiner, J. Richardt, Field quantization. Springer-Verlag, Berlin, Heidelberg (1996).
[22] J. I. Kapusta, Finite-Temperature Field Theory. Cambridge University Press, Cambridge (1989).