تحلیل پایداری یک مدل مرتبه کسری از ویروس HIV و عفونت ایدز در جامعه
محورهای موضوعی : آمارمحمدصادق شاهرخی دهکردی 1 , یاسمن احمدی 2
1 - هیات علمی، دانشگاه شهید بهشتی، دانشکده علوم ریاضی، گروه ریاضی کاربردی و صنعتی
2 - گروه ریاضی کاربردی و صنعتی، دانشکده علوم ریاضی، دانشگاه شهید بهشتی
کلید واژه: Equilibrium Points, Stability, HIV/AIDS Model with Fractional, Numerical Solution, Gr&, uuml, nwald-Letincov Algorit,
چکیده مقاله :
در این مقاله یک مدل غیرخطی از مرتبه کسری برای تحلیل و کنترل گسترش ویروس HIV ارائه شده و سپس نقاط تعادل آن که به نقطه تعادل بدون بیماری و نقطه تعادل عفونت شناخته میشوند یافت میشوند و پایداری آنها مورد بحث قرار میگیرد. شاخص انتقال یا عدد مولد که تابعی از پارامترهای ثابت موجود در مدل است، نقش مهمی در پایداری مدل فوق ایفا میکند. به عبارتی دقیقتر زمانی که ، نقطه تعادل بدون بیماری جاذب است. در مقابل وقتی که ، ناپایدار و نقطه تعادل عفونت وجود دارد و جاذب خواهد بود. در پایان نیز چند مثال عددی برای بررسی تاثیر پارامترهای موجود در مدل بر گسترش بیماری بیان میشود.
In this paper a non-linear model with fractional order is presented for analyzing and controlling the spread of HIV virus. Both the disease-free equilibrium and the endemic equilibrium are found and their stability is discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential role in the stability of the above model. In more precise expression, When the disease-free equilibrium is attractor, but when , is unstable and the endemic equilibrium exists and it is an attractor. Finally numerical simulations are also established to investigate the influence of the parameters in the model on the spread of the disease.
1. Ahmed E., A.M. A.El-SayedbHala and A.A. El-Saka, On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358 (2006)1-4.
2. Benson DA., Meerschaert M.M., Revielle, J., “Fractional calculus in hydrologic modeling: a numerical perspective”, Adv. Water Resour., 51 (2013) 479-497.
3. Bohannan G., “Analog fractional order controller in temperature and motor control applications”, J. Vib. Control, 14 (2008) 1487-1498.
4. Cai L., Li X., Ghosh M., and Guo B., Stability analysis of an HIV/AIDS epidemic model with treatment, Journal of computational and Applied Math. 229 (2009) 313-323.
5. Das, S., “Fractional Calculus for System Identification and Controls”, Springer, New York, (2008).
6. Hsieh Y.H., Chen C.H., Modeling the social dynamics of a sex industry: its implications for spread of HIV/AIDS, Bull. Math. Biol. 66 (2004) 143-249.
7. Jiang Y.L., Wang X.L., Wang Y., “On a stochastic heat equation with first order fractional noises and applications to finance”, J. Math. Anal. Appl., 396 (2012) 656-669.
8. Jiang Y.L., Ding X.L., “Waveform relaxation methods for fractional differential equations with the Caputo derivatives”, J. Comput. Appl. Math., 238 (2013) 51-67.
9. Kenneth S. Miller, Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A wiley-Interscience Publication, USA, (1993).
10. Larsson S., Racheva M., Saedpanah F., “Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity”, Comput. Method. Appl. Mech. Eng., 283 (2015) 196-209.
11. Mickens R.E., Numerical integration of population models satisfying conservation laws: NSFD methods, Biol. Dyn. 1(4) (2007) 1751-1766.
12. Mickens R.E., Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2005.
13. Naresh R., Tripathi A., and Sharma D., A nonlinear AIDS epidemic model with screening and time delay, App. Math. Comp. 217 (2011) 4416-4426.
14. Radwan A.G., K. Moaddy and S. Momani, Stability and non-standard finite difference method of the generalized Chua’s circuit, Comput. Math. Appl. 62 (2011) 961-970.
15. Sierociuk D., Dzielinski A., Sarwas G., Petras I., Podlubny I., Skovranek T., “ Modelling heat transfer in heterogeneous media using fractional calculus”, Phil. Trans. R. Soc. A, 371 (2013) 20120146.
16. Srinivasa Rao A.S.R., Mathematical modeling of AIDS epidemic in India, Curr. Sci. 84 (2003) 1192-1197.
17. Tripathi A., Naresh R., and Sharma D., Modeling the effect of screening of unaware infectives on the spread of HIV infection, Appl. Math. 184 (2007) 1053-1068.