دوگانگی نوع ولف برای برنامههای ریاضی با قیود تعادلی ناهموار
محورهای موضوعی : آمار
1 - گروه ریاضی کاربردی، دانشکده علوم ریاضی، دانشگاه شهرکرد، شهرکرد، ایران
کلید واژه: Wolfe dual problem, optimality conditions, optimization problem with equilibrium constraints, convexificators,
چکیده مقاله :
یک برنامهی ریاضی باقیود تعادلی یکی از مسائل بهینهسازی است که قیود آن برای مدلسازی تعادلهای معینی در کاربردهای علوم مهندسی و اقتصاد مورد استفاده قرار میگیرد. هدف ما در این مقاله بررسی شرایط لازم بهینگی و بدست آوردن دوگان ولف برای این گونه مسائل است. برای این منظور یک مسالهی بهینهسازی با قیود تعادلی را در حالت ناهموار و غیرمحدب در نظر گرفته و فرض میکنیم توابعی که در مساله وجود دارند الزاما مشتقپذیر و یا محدب نیستند. به کمک مفهوم محدبکنندهها که تعمیمی از زیردیفرانسیلها هستند، مفاهیم ایستایی تعمیم یافته، تحدب تعمیم یافته و برخی از توصیفهای قیدی را برای اینگونه از مسائل تعریف میکنیم. مسالهی دوگان وُلف را برای یک مسالهی بهینهسازی با قیود تعادلی معرفی میکنیم و برای این مساله با استفاده از مفهوم محدبکنندهها، قضایای دوگانگی ضعیف و دوگانگی قوی را بیان و اثبات میکنیم.
Mathematical program with equilibrium constraints is one of the optimization problems whose constraints are used to model certain equilibria in the applications of engineering sciences and economics. Our main aim in the present paper is to investigate the necessary optimality conditions and create a Wolfe type dual problem for such problems. To investigate these conditions, we consider non smooth and non convex optimization problem with equilibrium constraints and suppose that all functions are not necessarily differentiable or convex. For this optimization problem, using the notion of convexificator, which is viewed as a generalization of the idea of subdifferential, we remind some constraint qualifications, stationary conditions, and generalized convexity. Finally, weak duality theorem and strong duality theorem are established under appropriate generalized convexity assumptions and a constraint qualification for an optimization problem with equilibrium constraints based on the notion of convexificators. We also illustrate some of our results by an example.
[1]. Scheel H, Scholtes S. Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity. Mathematics of Operations Research.,25:1-22(2000).
[2]. M. L. Flegel, Constraint Qualifications and Stationarity Concepts for Mathematical Programs with Equilibrium Constraints, Ph.D. Dissertation, Faculty of Mathematics University of Wurzburg, Germany, (2005).
[3]. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. Journal of Mathematical Analysis and Applications.307, 350-369 (2005).
[4]. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications. 124, 595-614 (2005).
[5]. Flegel, M.L., Kanzow, C.: On M-stationary points for mathematical programs with equilibrium constraints. J. Journal of Mathematical Analysis and Applications. 310, 286-302 (2005).
[6]. Outrata, J. V., Kocvara, M., Zowe, J.: Nonsmooth approach to optimization problems with equilibrium constraints. In: Pardalos, P. (ed.) Theory, Applications and Numerical Results, Kluwer Academic, Dordrecht (1998).
[7]. Movahedian, N., Nobakhtian, S.: Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints. Nonlinear Analysis. 72, 2694-2705 (2010).
[8]. Ye, J.J., Zhang, J.: Enhanced Karush–Kuhn–Tucker conditions for mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications. 163, 777-794 (2014).
[9]. V. F. Demyanov, Constructive Nonsmooth Analysis, Peterlang, Frankfurt am Main, (1995).
[10]. V. Jeyakumar and D.T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, Journal of Optimization Theory Applications. 101, 599-621(1999).
[11]. Demyanov VF. Convexification and concavification of a positively homogenous function by the same family of linear functions. Report 3, 208, 802. Universita di Pisa; (1994).
[12]. V. F. Demyanov, and V. Jeyakumar, Hunting for a smaller convex subdifferential, Journal of Global Optimization. 10, 305-326(1997).
[13]. Jeyakumar V, Luc DT. Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization. SIAM Journal on Control and Optimization.36:1815-1832(1998).
[14]. Ansari Ardali, A., Movahedian, N., Nobakhtian, S.: Convexificators and boundedness of the Kuhn–Tucker multipliers set, Optimization. 66:9, 1445-1463(2017).
[15]. Ansari Ardali, A, Boundedness of KKT Multipliers in Fractional Programming Problem Using Convexificators, Iranian Journal of Operations Research. 6(1), pp. 79-91(2015).
[16]. Ansari Ardali, A., Movahedian, N., Nobakhtian, S.: Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators. Optimization. 65:1, 67-85, (2014).
[17]. Wolfe, P.: A duality theorem for nonlinear programming. Quarterly Journal of Mechanics and Applied Mathematics. 19, 239-244 (1961).
[18]. Mond, B., Weir, T.: Generalized Concavity and Duality, Generalized Concavity in Optimization and Economics. Academic Press, New York (1981).
[19]. Pini, R., Singh, C.:Asurvey of recent [1985–1995] advances in generalized convexity with applications to duality theory and optimality conditions. Optimization. 39(4), 311-360 (1997).
[20]. Bo¸t, R.I., Grad, S.-M.: Wolfe duality andMond–Weir duality via perturbations. Nonlinear Analysis, Theory, Methods and Applications. 73(2), 374-384 (2010).
[21]. Borwein JM, Lewis AS. Convex analysis and nonlinear optimization: theory and examples. Vol. 3. New York: Springer; (2010).
[22] Dutta J, Chandra S. Convexificators, generalized convexity and vector optimization. Optimization. 53:77-94(2004).