روش تحلیلی جدید برای حل جریان لایه مرزی آشفته در محدوده وسیع اعداد رینولدز بالا بر روی صفحه تخت بدون حضور گرادیان فشار
محورهای موضوعی : آمارمحمدحسین کفاش 1 , داود دومیری گنجی 2 , محمد حسن نوبختی 3
1 - گروه مهندسی مکانیک و هوافضا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
3 - گروه مهندسی مکانیک و هوافضا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Friction Coefficient, Similarity solution, Flat plate, Turbulent Boundary layer, Rung-Kutta,
چکیده مقاله :
مقاله حاضر به بررسی یک روش نوین برای حل جریان لایه مرزی آشفته بر روی صفحه تخت بدون حضور گرادیان فشار میپردازد.ابتدا معادلات پیوستگی و مومنتم حرکت را برای شرایط حل مساله نوشته و سپس با ارائه یک مدل توربولانسی جدید در معادلات و نیز یک رابطه تحلیلی برای ترم تنش رینولدز، ترم تنش رینولدز را به ترم های همسان معادله تبدیل کرده. در نهایت با متغیرهای تشابهی معادلات فوق را به یک معادله دیفرانسیل معمولی غیر خطی تبدیل نموده که آن را یک معادله شبه تشابهی می نامیم. این معادله با استفاده از روش رانک کوتا وشوتینگ، به ازای اعداد رینولدز مختلف حل شده و نهایتا تنش برشی دیواره و ضریب اصطکاک محاسبه و با نتایج تجربی مقایسه شد که تطابق بسیار عالی مشاهده گردید. هم چنین با استفاده از روش انطباق منحنی ها برای (ضریب اصطکاک پوسته ای)و(ضخامت لایه مرزی) دو رابطه مستقل پیشنهاد گردید. دیده شد که در اعداد رینولدز خاصی پروفیل سرعت بدست آمده با پروفیل سرعت توان 1/7قابل مقایسه است که هرچه عدد رینولدز افزایش یابد همپوشانی آنها با هم بهتر میشود.
This paper studies a novel similarity solution of turbulent boundary layer (S.S.T.BL) on the flat plate with absence of pressure gradient (A.P.G). At first, the governing equations of motion (Continuum and momentum) with Specified boundary conditions (B.C) were written and then, governing partial differential equations (PDEs) have been transformed to high order non-linear ordinary differential equations (ODE) with inconsistent coefficients using similarity variables. Employing Rung-Kutta-Fehlberg and shooting method for high range of Reynolds number (Re), the obtained equation has been solved numerically and distribution of velocity, friction coefficient (Cf) , thickness of the turbulent boundary layer (Delta/x) are calculated which is in best agreement with experimental outcomes. The novelty of this study was to present two independent equations to calculate the friction coefficient and thickness of the turbulent boundary layer. Moreover, the presented equations are accurate at higher values of Reynolds number, however, previous models are week at this region.
[1] Ganji, D.D., M.J. Hosseini, and J. Shayegh, Some nonlinear heat transfer equations solved by three approximate methods. International Communications in Heat and Mass Transfer, 2007. 34(8): p. 1003-1016.
[2] Ganji, D.D. and A. Rajabi, Assessment of homotopy– perturbation and perturbation methods in heat radiation equations. International Communications in Heat and Mass Transfer, 2006. 33(3): p. 391-400.
[3] Sheikholeslami, M., M. Gorji-Bandpay, and D.D. Ganji, Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. International Communications in Heat and Mass Transfer, 2012. 39(7): p. 978-986.
[4] Soleimani, S., et al., Local RBF-DQ method for two-dimensional transient heat conduction problems. International Communications in Heat and Mass Transfer, 2010. 37(9): p. 1411-1418.
[5] Soleimani, S., et al., Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. International Communications in Heat and Mass Transfer, 2012. 39(4): p. 565-574.
[6] Wolfshtein, M., the Self-similar Turbulent Boundary Layer with Injection. Annual Conference on Aeronautics and Astronautics, 2004.
[7] Wolfshtein, M., The self-similar turbulent boundary layer with injection. Proceedings on CHT2008, Marrakech, Morocco.
[8] Wolfshtein, M., Some comments on turbulence modelling. International Journal of Heat and Mass Transfer, 2009. 52(17–18): p. 4103-4107.
[9] White, F.M., Viscous Fluid Flow1991: McGrow-Hill.
[10] Townsend, A.A., The structure of turbulent shear flow1956: Cambridge university press.
[11] T. Cebeci, An inverse boundary layer method for compressible laminar and turbulent boundary layers J. Aircraft, 1976. 13: p. 709-717.
[12] Henkes, R.A.W.M., Scaling of the turbulent boundary layer along a flat plate according to different turbulence models. International Journal of Heat and Fluid Flow, 1998. 19: p. 338-347.
[13] s Coles, D., The law of the wake in the turbulent boundary layer. J. Fluid Mech., 1956. 1: p. 191-226.
[14] Clauser, F.H., Turbulent Boundary Layers in Adverse Pressure Gradients. Aero. Sci., 1954. 21: p. 91-108.
[15] Mellor, G.L., Gibson, D. M., Equilibrium Turbulent Boundary Layers. Fluid Mech, 1966. 24: p. 225-253.
[16] Schlichting, H., Boundary Layer Theory, ed. 7th1979, NY: McGraw-Hill.
[17] Kondjoyan, A., F. Péneau, and H.-C. Boisson, Development of flat-plate thermal and velocity boundary layers under highly turbulent and instable air flows: Reynolds numbers ranging from 8400 to 127 000. International Journal of Thermal Sciences, 2004. 43(11): p. 1091-1100.
[18] Kondjoyan, A., F. Péneau, and H.-C. Boisson, Effect of high free stream turbulence on heat transfer between plates and air flows: A review of existing experimental results. International Journal of Thermal Sciences, 2002. 41(1): p. 1-16.
[19] Stuart W. Churchill, t., The Conceptual analysis of turbulent flow and convection. chemical Engineering and Processing, 1999. 38: p. 427-439.
[20] Anderson, P.S., W. M. Keys and R. J. Moffat:, J. Fluid Mech, 1975. 69: p. 353-375.
[21] Chun, M.-H. and S.-J. Park, Effects of turbulence model and interfacial shear on heat transfer in turbulent falling liquid films. International Communications in Heat and Mass Transfer, 1995. 22(1): p. 1-12.
[22] Makinde, O.D. and O.O. Onyejekwe, A numerical study of MHD generalized Couette flow and heat transfer with variable viscosity and electrical conductivity. Journal of Magnetism and Magnetic Materials, 2011. 323(22): p. 2757-2763.
[23] H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys.,, 1908. 56: p. 37-42.
[24 ] Holman, J.P., Heat Transfer ed. J. 13. Vol. 2. 2009: Mcgraw-Hill
[25] M.H. Khademi, A. Zeinolabedini Hezave, D. Mowla, M. Taheri, A Simple Model for Turbulent Boundary Layer Momentum Transfer on a Flat Plate, Chemical Engineering & Technology, 33 (2010) 867-877.