بررسی حضور 8 ژن اشریشیا کلی پاتوژنیک طیور در اشریشیا کلی اوروپاتوژنیک انسان
محورهای موضوعی : میکروب شناسی مولکولیفاطمه ناطقی 1 , مصطفی جعفرپور 2 , علی ناظمی 3
1 - دانشگاه آزاد اسلامی، واحد تنکابن، گروه میکروبیولوژی
2 - گروه میکروبیولوژی ، دانشگاه آزاد اسلامی، واحد تنکابن
3 - گروه ژنتیک ، دانشگاه آزاد اسلامی، واحد تنکابن
کلید واژه: عوامل حدت, UPEC, APEC,
چکیده مقاله :
سابقه و هدف: طیف وسیعی از عفونت های خارج روده ای در انسان و حیوانات به وسیله سویه های اشریشیا کلی خارج روده ای (EXPEC) ایجاد می شوند. از آن جمله می توان به سویه های APEC (عامل بیماریزای طیور) و UPEC (عامل عفونت دستگاه ادراری در انسان) اشاره نمود. این مطالعه با هدف مقایسه حضور 8 ژن بیماریزایی در دو سویه UPEC و APEC و بررسی فرضیه نقش کلی باسیل های جدا شده طیور به عنوان منبع مناسب جهت پیدایش و حضور UPEC انجام شد. مواد و روش ها: در مجموع 100 نمونه اشریشیا کلی از بیماران مبتلا به عفونت ادراری و 105 نمونه از جوجه های گوشتی مبتلا به کلی باسیلوز جمع آوری گردید. پس از استخراج DNA به منظور بررسی حضور ژن های astA، iss، irp2،papC ، iucD، tsh، vatو cva/cvi از روش Multiplex PCR استفاده گردید. سپس از آزمون آماری مربع کای به منظور ارزیابی همبستگی بین سویه های APEC و UPEC استفاده شد. یافته ها: فراوانی ژن های astA، iss،irp2و papCدر سویه UPECجدا شده از بیماران مبتلا به عفونت ادراری به ترتیب 13%، 11%، 33% و 3% بود. همچنین ژن هایiucD , tsh , vat و cva/cviدر هیچ یک از سویه های انسانی مشاهده نگردید. اما تمامی ژن های مورد بررسی در سویه های جدا شده از طیور وجود داشتند. نتیجه گیری: با توجه به شناسایی ژن های astA، iss، irp2و papC در هر دو سویه APEC و UPEC، می توان نتیجه گیری نمود که این ژن ها می توانند به عنوان عوامل موثر در حضور خارج روده ای باکتری مطرح باشند. از این میان ژن iss به دلیل دارا بودن بیشترین شیوع در هر دو سویه و نیز ژن irp2 با فراوانی 33% در سویه های UPEC، با احتمال بیشتری می توانند به عنوان مهم ترین عوامل بیماریزای در سویه های اشریشیا کلی معرفی شوند.
Background and Objectives: A wide range of extraintestinal infections in humans and vertebrate animals are created by the extraintestinal E. coli strains (EXPEC), including APEC (Avian pathogenic Escherichia coli) and UPEC (urinary tract infection in humans). This study aimed to survey presence of eight involving virulent genes of APEC and UPEC strains in human extraintestinal E.coli strains to support the hypothesis that these genes in human APEC and UPEC were originated from avian APEC and UPEC strains. Materials and Methods: A total of 100 and 105 Escherichia coli samples were collected from patients with urinary tract infection and the infected chickens with colibacillose, respectively. After DNA extraction, Multiplex PCR was used for the presence of genes astA, iss, papC, iucD, tsh, vat, cva / cvi (related to strain APEC). Correlation between APEC and UPEC were analyzed by chi-square test. Results: The frequency of astA, iss, irp2 and papC genes in UPEC strains isolated from patients with urinary tract infection were 13%, 11%, 33% and 3%, respectively. The genes iucD, tsh, vat, and cva / cvi were observed in only one of the isolated strains. All genes were observed in all avian strains. Conclusion: presence of astA, iss, irp2, papC genes in both APEC and UPEC strains confirmed their role in extraintestinal infections. Between them, iss gene (the most common isolated gene) and irp2 gene (with 33% frequency in of UPEC) are more likely the most important pathogenic factors in the E. coli strains.
1. Nakazato G, de Campos TA, Stehling EG, Brocchi M, da Silveira WD. Virulence factors of avian pathogenic Escherichia coli ( APEC). Pesq Vet Bras. 2009; 29(7): 479-486.
2. Ron EZ. Host specificity of septicemic Escherichia coli: human and avian pathogens. Curr Opin Microbiol. 2006; 9(1): 28-32.
3. Moulin-Schouleur M, Répérant M, Laurent S, Brée A, Mignon-Grasteau S, Germon P, Rasschaert D, Schouler C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol. 2007; 45 (10): 3366-3376.
4. Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Brée A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J. Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol. 2006; 44(10): 3484-3492.
5. Bauchart P, Germon P, Bree A, Oswald E, Hacker J, Dobrindt U. Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli--search for factors involved in host specificity or zoonotic potential. Microb Pathog. 2010; 49(3): 105-115.
6. Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antáo EM, Laturnus C, Diehl I, Glodde S, Homeier T, Böhnke U, Steinrück H, Philipp HC, Wieler LH. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? Int J Med Microbiol. 2007; 297(3): 163-176.
7. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol. 2007; 189 (8): 3228-3236.
8. Zhao L, Gao S, Huan H, Xu X, Zhu X, Yang W, Gao Q, Liu X. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E.coli in a murine urinary tract infection model and a chicken challenge model. Microbiology. 2009; 155(5): 1634-1644.
9. Antão EM, Glodde S, Li G, Sharifi R, Homeier T, Laturnus C, Diehl I, Bethe A, Philipp HC, Preisinger R, Wieler LH, Ewers C. The chicken as a natural model for extraintestinal infection caused by avian pathogenic Escherichia coli (APEC), Microb Pathog. 2008; 45(5-6): 361-369.
10. Ewers C, Antao EM, Diehl I, Phlipp HC, Wieler LH. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol. 2009; 75(1): 184 -192.
11. Kwon SG, Cha SY, Choi EJ, Kim B, Song HJ, Jang HK. Epidemiological prevalence of avian pathogenic Escherichia coli differentiated by multiplex PCR from commercial chickens and hatchery in Korea. J Bacteriol Virol. 2008; 38(4): 179-188.
12. Mora A, López C, Dabhi G, Blanco M, Blanco JE, Alonso MP, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, Blanco J. Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC Microbiol. 2009; 9: 132.
13. Delicato ER, de Brito BG, Konopatzki AP, Gaziri LC, Vidotto MC. Occurrence of the temperature-sensitive hemagglutinin among avian Escherichia coli. Avian Dis. 2002; 46(3): 713-716.
14. Dozois CM, Dho-Moulin M, Brée A, Fairbrother JM, Desautels C, Curtiss R 3rd. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region. Infect Immun. 2000; 68(7): 4145-4154.
15. Ewers C, Janssen T, Kiessling S, Philipp HC, Wieler LH. Rapid detection of virulence associated genes is avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis. 2005; 49(2): 269-273.
16. Ewers C, Janssen T, Kiessling S, Philipp HC, Wieler LH. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol. 2004; 104(1-2): 91-101.
17. Gibbs PS, Maurer JJ, Nolan LK, Wooley RE. Prediction of chicken embryo lethality with the avian Escherichia coli traits complement resistance, colicin V production, and presence of the increased serum survival gene cluster (iss). Avian Dis. 2003; 47(2): 370-379.
18. Johanson, TJ, Siek, KE, Johanson, SJ, Nolan, LK. DNA sequence of a ColV plasmid and prevalence of selected plasmid encoded virulence gene among avian Escherichia coli strains. J Bacteriol. 2006; 188(2): 745-758.
19. Knöbl T, Gomes TAT, Vieira MAM, Ferreira F, Bottino JA, Ferreira AJP. Some adhesins of avian pathogenic Escherichia coli (APEC) isolated from septicemic poultry in Brazil. Braz J Microbiol. 2006; 37(3): 1517-8382.
20. Moon BM, Won GY, Choi YY, Jin JK, Park, JH, EO SK, Lee JH. Isolation and characteristics of avian pathogenic Escherichia coli from birds associated with colibacillosis. Proceedings of AZWMP. Chulalongkorn Uni. Fac. of Vet. Sc., Bangkok, Thailand, 26-29 Oct 2006.
22. Rocha, ACGP, Rocha SLS, Lima- Rosa, CAV, Souza GF, Moraes HLS, Salle FO, Moraes LB, Salle CTP. Genes associated with pathogenicity of avian Escherichia coli (APEC) isolated from respiratory case of poultry. Pesq Vet Bras. 2008; 28(3): 183-186.
23. Skyberg JA, Horne SM, Giddings CW, Wooley RE, Gibbs PS, Nolan LK. Characterizing avian Escherichia coli isolates with multiplex polymerase chain reaction. Avian Dis. 2003; 47(4): 1441-1447.
24. Won GY, Moon BM, Oh IG, Matsuda K, Chaudhari AA, Hur J, Eo SK, Yu IJ, Lee YJ, Lee YS, Kim BS, Lee JH. Profiles of virulence-associated genes of avian pathogenic Escherichia coli isolates from chickens with colibacillosis. J poultry Sci. 2009; 46(3), 260-266.
25. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology. 2005; 151(6): 2097-2110.
26. Apun K, Kho KL, Chong YL, Hashimatol FH, Abdullah MT, Rahman MA, Lesley MB, Samuel L. Detection of Escherichia coli O157:H7 in Wildlife from Disturbed Habitats in Sarawak, Malaysia. Res J Microbiol. 2011; 6(2): 132-139.
27.Jafarpour M, Kalaei S, Nazemi A. molecular identification of avian pathogenic E.coli in broilers bred in northern Iran by multiplex PCR.(Accepted and Modified for publishing in Lahijan bio science journal)
28. Adiri RS, Gophna U, Ron EZ. Multilocus sequence typing (MLST) of Escherichia coli O78 strains. FEMS Microbiol Lett. 2003; 222(2): 199-203.
29. Mokady D, Gophna U, Ron EZ. Extensive gene diversity in septicemic Escherichia coli strains. J Clin Microbial. 2005; 43(1): 66-73.
30. Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C, Johnson JR, Kim KS, Spanjaard L, Nolan LK. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol. 2008; 74(22): 7043-7050.