تنوع ژنوتیپی سویه های مقاوم مایکوباکتریوم توبرکلوزیس جداشده از بیماران مسلول مرکز آذربایجان شرقی با روش MIRU-VNTR
محورهای موضوعی : میکروب شناسی مولکولیعلی آفاقی قراملکی 1 , سیدرضا مؤدب 2 , مجتبی داربویی 3 , خلیل انصارین 4 , شهرام حنیفیان 5
1 - دکتری، دانشگاه آزاد اسلامی، واحد شیراز، دانشکده علوم، گروه میکروبیولوژی
2 - دانشیار، دانشگاه علوم پزشکی تبریز، دانشکده پیراپزشکی، گروه علوم آزمایشگاهی
3 - استادیار، دانشگاه آزاد اسلامی، واحد شیراز، دانشکده علوم، گروه میکروبیولوژی
4 - استاد، دانشگاه علوم پزشکی تبریز، مرکز تحقیقات سل و بیماری های ریوی
5 - استادیار، دانشگاه آزاد اسلامی، واحد تبریز، دانشکده علوم غذایی و تکنولوژی
کلید واژه: MIRU-VNTR, بیماری سل, مقاومت چندگانه, خانواده های ژنوتیپی, تعیین ژنوتیپ,
چکیده مقاله :
سابقه و هدف: بیماری سل به دلیل گسترش مقاومت، به یکی از جدی ترین بیماری ها تبدیل شده است. مطالعات اپیدمیولوژی مولکولی سل با تعیین تنوع ژنتیکی سویه های مورد گردش در جوامع به منظور برنامه های کنترلی این بیماری اهمیت دارد. این مطالعه با هدف بررسی اپیدمیولوژی مولکولی سل مقاوم به دارو در بین بیماران دو کشور ایران و جمهوری آذربایجان انجام گرفت.مواد و روش ها: جدایه های حاصل از بیماران مسلول شهر تبریز و کشور جمهوری آذربایجان به مدت یک سال مورد بررسی قرار گرفتند. تمامی جدایه ها با روش های بیوشیمیایی به عنوان مجموعه مایکوباکتریوم توبرکلوزیس تشخیص داده شدند و با روش نسبی برای داروهای ایزونیازید، ریفامپسین، استرپتومایسین و اتامبوتول تعیین حساسیت شدند. پس از استخراج DNA، لوکوس های MIRU تکثیر شدند و تعداد تکرارهایشان در مقایسه با سویه استاندارد H37Rv تعیین گردید. تعیین ژنوتیپ بر اساس الگوی تعداد تکرارهای مجموعه لوکوس های 15 گانه مورد مطالعه، با استفاده از سایت مرجع MIRU-VNTRplus انجام گرفت.یافته ها: از مجموع 119 جدایه مورد بررسی، مقاومت حداقل به یک دارو و مقاومت چند دارویی (MDR) به ترتیب در 27.73 و 6.72 درصد موارد شناسایی شد. همچنین خانواده های ژنوتیپی شناخته شده شامل Uganda I ،Uganda II ، LAM ، TUR ، Delhi/CAS ، Bovis ، Beijing ، NEW-1 و Cameron بودند.نتیجه گیری: نتایج نشان داد که میزان و الگوی مقاومت دارویی و نیز خانوادههای ژنوتیپی در بین مردم تبریز و کشور آذربایجان تفاوت دارند، اما این شاخص ها برای جمهوری آذربایجان نسبت به تبریز متنوع تربودند.
Background & Objectives: Tuberculosis has become one of the most serious diseases due to theincreased prevalence of resistance. To control the disease, tuberculosis molecular epidemiological studies are important in determining the genetic diversity of strains circulating in communities. The aim of this study was to investigate the molecular epidemiology of drug-resistant tuberculosis among patients in Iran and Azerbaijan. Materials & Methods: The isolates from tuberculosis patients of the Azerbaijan Republic andTabriz were studied from March 2014 to March 2015. All isolates were identified as Mycobacterium tuberculosis complex by biochemical methods and drug susceptibility testing against isoniazid, rifampicin, streptomycin, and ethambutol was performed by proportional method. Following DNA extraction, each MIRU locus was amplified individually to determine their repeat numbers as compared to H37Rv standard strain. Finally, genotyping was performed according to the repeat numbers of subsets of 15 studied loci using the MIRU-VNTRplus reference website. Results: Totally of 119 obtained isolates, resistance to at least one drug of the first line of anti-TB drugs and multidrug resistance were observed as 27.73 and 6.72 percent, respectively. Cameron, UgandaӀ, UgandaӀӀ, LAM, TUR, Dehli/CAS, Bovis, Beijing, NEW-1 and H37Rv were among genotypic families which were determined. Conclusion: According to the results of this study, the rate and pattern of drug resistance andgenotypic families are different among the people of Tabriz and Azerbaijan, but the indicators were more diverse in Azerbaijan as compared to Tabriz.
Available at: http://www.who.int/tb/publications/global_report/gtbr14_supplement_web_v3.pdf.
2. WHO, World Health Organization 2017. Global tuberculosis report. Available at: http://
apps.who.int/iris/bitstream/handle/10665/259366/9789241565516-eng.pdf;jsessionid.
3. Tavakoli A. Incidence and prevalence of tuberculosis in Iran and neighboring countries. Zahedan J
Res Med Sci. 2017; 19(7): e9238.
4. Hajimiri ES, Masoomi M, Ebrahimzadeh N, Fateh A, Hadizadeh Tasbiti A, Rahimi Jamnani F,
Siadat SD. High prevalence of Mycobacterium tuberculosis mixed infection in the capital of
moderate tuberculosis incidence country. Microb Pathog. 2016; 93: 213-218.
5. Metanat M, Mood BS, Shahreki S, Dawoudi SH. Prevalence of multidrug-resistant and extensively
drug-resistant tuberculosis in patients with pulmonary tuberculosis in Zahedan. southeastern Iran.
Iran Red Crescent Medical J. 2012; 14(1): 53-55.
6. Asgharzadeh M, Samadi Kafil H, Pour-Ostadi M, Ghorghanlu S. The role of Azeri patients in
transmission of tuberculosis to East Azerbaijan, Iran. Analyt Res Clin Med. 2015; 3(2): 94-98.
7. Ju Chin P, Jou TR. A modified automated high-throughput mycobacterial interspersed repetitive
unit method for genotyping Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2005; 53:
325-327.
8. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis:
Current insights. Clin Microbiol Rev. 2006; 19(4): 658-685.
9. Velayati AA, Farnia P, Mozafari M, Malekshahian D, Farahbod AM, Seif S, Mirsaeidi M.
Identification and genotyping of Mycobacterium tuberculosis isolated from water and soil samples
of a Metropolitan City. Chest. 2015; 147(4): 109-114.
10. Supply P, Lesjean S, Savine E, Kremer K, Van Soolingen D, Locht C. Automated high-throughput
genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial
interspersed repetitive units. J Clin Microbiol. 2001; 39(10): 3563-3571.
11. Romano MI, Amadio A, Bigi F, Klepp L, Etchechoury I, Llana MN, Cataldi A. Further analysis of
VNTR and MIRU in the genome of Mycobacterium avium complex, and application to molecular
epidemiology of isolates from South America. Vet Microbiol. 2005; 110(3-4): 221-237.
12. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis:
Current insights. Clin Microbiol Rev. 2006; 19(4): 658-685.
13. Won Yun K, Ju Song E, Eun Choi G, Kyung Hwang I, Yup Lee E, Chang CL. Strain typing of
Mycobacterium tuberculosis isolates from Korea by mycobacterial interspersed repetitive
units-variable number of tandem repeats. Korean J Lab Med. 2009; 29: 314-319.
14. Yana J, Joub, Chien Koc W, Jong Wud J, Lin Yanga M, Mo Chen H. The use of variable-number
tandem-repeat mycobacterial interspersed repetitive unit typing to identify laboratory crosscontamination with Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2005; 52: 21-28.
15. Rafi A, Moaddab SR. Principles of mycobacteriology. Tabriz, Iran. Soutodeh, 2003. [In Persian]
16. Rieder HL, Chonde TM, Myking H, Urbanczik R, Laszlo A, Kim SJ, Deun AV, Trébucq A. The
public health service national tuberculosis reference laboratory and the national laboratory network.
Paris, France. International Union Against Tuberculosis and Lung Disease (IUATLD). 1998.
17. Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction of Mycobacterium tuberculosis
DNA: A question of containment. J Clin Microbiol. 2005; 43(6): 2996-2997.
18. Afaghi-Gharamaleki A, Moaddab S, Darbouy M, Ansarin K, Hanifian S. Determining the risk of
intra-community transmission of tuberculosis in the northwest of Iran though 15 loci MIRU-VNTR
typing. Eur J Microbiol Immunol. 2017; 7(1): 46-54.
19. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Ru¨sch-Gerdes S, Willery E, Savine E, Haas
PD, Deutekom HV, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V,
Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, Soolingen DV. Proposal for
standardization of optimized mycobacterial interspersed repetitive unit–variable-number tandem
repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006; 44(12): 4498-4510.
20. Allix-Be´guec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of
MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and
phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol.
2008; 46(8): 2692-2699.
21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic
trees. Mol Biol Evol. 1987; 4: 406-425.
22. Monteserin J, Camacho M, Barrera L, Palomino JC, Ritacco V, Martin A. Genotypes of
Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia. Infect Genet Evol.
2013; 17: 195-201.
23. Asgharzadeh M, Nahaei MR, Rafi A. Identification of Ethambotol-resistant strains of
Mycobacterium tuberculosis by MAS-PCR and its comparing with proportional method. J
Mazandaran Univ Med Sci. 2007; 17(5): 50-56. [In Persian]
24. Roshdi Maleki M, Moaadab SR. Drug susceptibility of Mycobacterium tuberculosis strains to
primary and secondary drugs in Tabriz. Iranian Med J Microbiol. 2009; 1: 18- 24. [In Persian]
25. Naserpour FT, Naderi M, Mohagheghi Far AH, Oskoui Oweisi H, Sharifi-Moud B. Drug
resistance of Mycobacterium tuberculosis strains isolated from patients with pulmonary
tuberculosis in South Eastern of Iran. J Med Sci. 2006; 6(2): 275-278.
26. Pourakbari B, Mamishi S, Mohammadzadeh M, Mahmoudi S. First-line anti-tubercular drug
resistance of Mycobacterium tuberculosis in Iran: A systematic review. Front Microb. 2016; 7:
1-13. doi: 10.3389/fmicb.2016.01139.
27. Metanat M, Sharifi-Mood B, Shahreki S, Dawoudi SH. Prevalence of multidrug-resistant and
extensively drug-resistant tuberculosis in patients with pulmonary tuberculosis in Zahedan,
Southeastern Iran. Iran Red Crescent Med J. 2012; 14(1): 53-55.
28. Merza MA, Farnia P, Tabarsi P, Khazampour M, Masjedi MR, Velayati AA. Anti-tuberculosis
drug resistance and associated risk factors in a tertiary level TB centre in Iran: a retrospective
analysis. J Infect Dev Ctries. 2011; 5(7): 511-519.
29. Punpanich Vandepitte W, Rattanasataporn R, Treeratweeraphong V. Drug-resistant tuberculosis
among urban Thai children: A 10-year review. Southeast Asian J Trop Med Public Health. 2015;
46(5): 892-900.
30. WHO. 2015. Global tuberculosis report. Availabe at: www.who.int/iris/
bitstream/10665/191102/1/9789241565059_eng.pdf?ua.
31. Sharma SK, Sethi S, Mewara A, Meharwal S, Jindal S, Sharma M, Katoch V. Genetic
polimorphisms among Mycobacterium tuberculosis isolates from patients with pulmonary
tuberculosis in Northern India. Southeast Asian J Trop Med Public Health. 2012; 43(5):
1161-1168.
32. Alikhanova N, Akhundova I, Seyfaddinova M, Mammadbayov E, Mirtskulava V, Rusch-Gerdes
S, Bayramov R, Suleymanova J, Kremer K, Dadu A, Acosta D, Acosta AD, Dara M. First national
survey of anti-tuberculosis drug resistance in Azerbaijan and risk factors analysis. Public Health
Action. 2014; 4(2): S17–23.
33. Azimi T, Nasiri M J, Zamani S, Hashemi A, Goudarzi H, Imani Fooladi AA, Feizabadi MM,
Fallah F. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran J Clin
Tuberc Other Mycobact Dis. 2018; 11: 1-6.
34. Haeili M, Darban-Sarokhalil D, Fooladi AA, Javadpour S, Hashemi A, Siavoshi F, Feizabadi
MM. Spoligotyping and drug resistance patterns of Mycobacterium tuberculosis
isolates from five provinces of Iran. Microbiol Open. 2013; 2(6): 988-996.
35. Hoffner S, Sahebi L, Ansarin K, Sabour S, Mohajeri P. Mycobacterium tuberculosis of the
Beijing genotype in Iran and the WHO Eastern Mediterranean Region: A meta-analysis. Microb
Drug Resist. 2017; 24(6): 693-698.
36. Teixeira Dantas NG, Noel Suffys P, Carvalho WS, Magdinier Gomes H, Refregier G, Sola C,
Kireopori Gomgnimbou M. Genetic diversity and molecular epidemiology of multidrug-resistant
Mycobacterium tuberculosis in Minas Gerais State, Brazil. BMC Infect Dis. 2015; 15: 306-316.
37. Liu Y, Tian M, Wang X, Wei R, Xing Q, Ma T, Jiang X, Li W, Zhang Z, Xue Y, Zhang X,
Wang W, Wang T, Hong F, Zhang J, Wang S, Li C. Genotypic diversity analysis of
Mycobacterium tuberculosis strains collected from Beijing in 2009, using spoligotyping and
VNTR typing. PLoS One. 2014; 9(9): 1067-1087.
_||_
Available at: http://www.who.int/tb/publications/global_report/gtbr14_supplement_web_v3.pdf.
2. WHO, World Health Organization 2017. Global tuberculosis report. Available at: http://
apps.who.int/iris/bitstream/handle/10665/259366/9789241565516-eng.pdf;jsessionid.
3. Tavakoli A. Incidence and prevalence of tuberculosis in Iran and neighboring countries. Zahedan J
Res Med Sci. 2017; 19(7): e9238.
4. Hajimiri ES, Masoomi M, Ebrahimzadeh N, Fateh A, Hadizadeh Tasbiti A, Rahimi Jamnani F,
Siadat SD. High prevalence of Mycobacterium tuberculosis mixed infection in the capital of
moderate tuberculosis incidence country. Microb Pathog. 2016; 93: 213-218.
5. Metanat M, Mood BS, Shahreki S, Dawoudi SH. Prevalence of multidrug-resistant and extensively
drug-resistant tuberculosis in patients with pulmonary tuberculosis in Zahedan. southeastern Iran.
Iran Red Crescent Medical J. 2012; 14(1): 53-55.
6. Asgharzadeh M, Samadi Kafil H, Pour-Ostadi M, Ghorghanlu S. The role of Azeri patients in
transmission of tuberculosis to East Azerbaijan, Iran. Analyt Res Clin Med. 2015; 3(2): 94-98.
7. Ju Chin P, Jou TR. A modified automated high-throughput mycobacterial interspersed repetitive
unit method for genotyping Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2005; 53:
325-327.
8. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis:
Current insights. Clin Microbiol Rev. 2006; 19(4): 658-685.
9. Velayati AA, Farnia P, Mozafari M, Malekshahian D, Farahbod AM, Seif S, Mirsaeidi M.
Identification and genotyping of Mycobacterium tuberculosis isolated from water and soil samples
of a Metropolitan City. Chest. 2015; 147(4): 109-114.
10. Supply P, Lesjean S, Savine E, Kremer K, Van Soolingen D, Locht C. Automated high-throughput
genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial
interspersed repetitive units. J Clin Microbiol. 2001; 39(10): 3563-3571.
11. Romano MI, Amadio A, Bigi F, Klepp L, Etchechoury I, Llana MN, Cataldi A. Further analysis of
VNTR and MIRU in the genome of Mycobacterium avium complex, and application to molecular
epidemiology of isolates from South America. Vet Microbiol. 2005; 110(3-4): 221-237.
12. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis:
Current insights. Clin Microbiol Rev. 2006; 19(4): 658-685.
13. Won Yun K, Ju Song E, Eun Choi G, Kyung Hwang I, Yup Lee E, Chang CL. Strain typing of
Mycobacterium tuberculosis isolates from Korea by mycobacterial interspersed repetitive
units-variable number of tandem repeats. Korean J Lab Med. 2009; 29: 314-319.
14. Yana J, Joub, Chien Koc W, Jong Wud J, Lin Yanga M, Mo Chen H. The use of variable-number
tandem-repeat mycobacterial interspersed repetitive unit typing to identify laboratory crosscontamination with Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2005; 52: 21-28.
15. Rafi A, Moaddab SR. Principles of mycobacteriology. Tabriz, Iran. Soutodeh, 2003. [In Persian]
16. Rieder HL, Chonde TM, Myking H, Urbanczik R, Laszlo A, Kim SJ, Deun AV, Trébucq A. The
public health service national tuberculosis reference laboratory and the national laboratory network.
Paris, France. International Union Against Tuberculosis and Lung Disease (IUATLD). 1998.
17. Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction of Mycobacterium tuberculosis
DNA: A question of containment. J Clin Microbiol. 2005; 43(6): 2996-2997.
18. Afaghi-Gharamaleki A, Moaddab S, Darbouy M, Ansarin K, Hanifian S. Determining the risk of
intra-community transmission of tuberculosis in the northwest of Iran though 15 loci MIRU-VNTR
typing. Eur J Microbiol Immunol. 2017; 7(1): 46-54.
19. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Ru¨sch-Gerdes S, Willery E, Savine E, Haas
PD, Deutekom HV, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V,
Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, Soolingen DV. Proposal for
standardization of optimized mycobacterial interspersed repetitive unit–variable-number tandem
repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006; 44(12): 4498-4510.
20. Allix-Be´guec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of
MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and
phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol.
2008; 46(8): 2692-2699.
21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic
trees. Mol Biol Evol. 1987; 4: 406-425.
22. Monteserin J, Camacho M, Barrera L, Palomino JC, Ritacco V, Martin A. Genotypes of
Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia. Infect Genet Evol.
2013; 17: 195-201.
23. Asgharzadeh M, Nahaei MR, Rafi A. Identification of Ethambotol-resistant strains of
Mycobacterium tuberculosis by MAS-PCR and its comparing with proportional method. J
Mazandaran Univ Med Sci. 2007; 17(5): 50-56. [In Persian]
24. Roshdi Maleki M, Moaadab SR. Drug susceptibility of Mycobacterium tuberculosis strains to
primary and secondary drugs in Tabriz. Iranian Med J Microbiol. 2009; 1: 18- 24. [In Persian]
25. Naserpour FT, Naderi M, Mohagheghi Far AH, Oskoui Oweisi H, Sharifi-Moud B. Drug
resistance of Mycobacterium tuberculosis strains isolated from patients with pulmonary
tuberculosis in South Eastern of Iran. J Med Sci. 2006; 6(2): 275-278.
26. Pourakbari B, Mamishi S, Mohammadzadeh M, Mahmoudi S. First-line anti-tubercular drug
resistance of Mycobacterium tuberculosis in Iran: A systematic review. Front Microb. 2016; 7:
1-13. doi: 10.3389/fmicb.2016.01139.
27. Metanat M, Sharifi-Mood B, Shahreki S, Dawoudi SH. Prevalence of multidrug-resistant and
extensively drug-resistant tuberculosis in patients with pulmonary tuberculosis in Zahedan,
Southeastern Iran. Iran Red Crescent Med J. 2012; 14(1): 53-55.
28. Merza MA, Farnia P, Tabarsi P, Khazampour M, Masjedi MR, Velayati AA. Anti-tuberculosis
drug resistance and associated risk factors in a tertiary level TB centre in Iran: a retrospective
analysis. J Infect Dev Ctries. 2011; 5(7): 511-519.
29. Punpanich Vandepitte W, Rattanasataporn R, Treeratweeraphong V. Drug-resistant tuberculosis
among urban Thai children: A 10-year review. Southeast Asian J Trop Med Public Health. 2015;
46(5): 892-900.
30. WHO. 2015. Global tuberculosis report. Availabe at: www.who.int/iris/
bitstream/10665/191102/1/9789241565059_eng.pdf?ua.
31. Sharma SK, Sethi S, Mewara A, Meharwal S, Jindal S, Sharma M, Katoch V. Genetic
polimorphisms among Mycobacterium tuberculosis isolates from patients with pulmonary
tuberculosis in Northern India. Southeast Asian J Trop Med Public Health. 2012; 43(5):
1161-1168.
32. Alikhanova N, Akhundova I, Seyfaddinova M, Mammadbayov E, Mirtskulava V, Rusch-Gerdes
S, Bayramov R, Suleymanova J, Kremer K, Dadu A, Acosta D, Acosta AD, Dara M. First national
survey of anti-tuberculosis drug resistance in Azerbaijan and risk factors analysis. Public Health
Action. 2014; 4(2): S17–23.
33. Azimi T, Nasiri M J, Zamani S, Hashemi A, Goudarzi H, Imani Fooladi AA, Feizabadi MM,
Fallah F. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran J Clin
Tuberc Other Mycobact Dis. 2018; 11: 1-6.
34. Haeili M, Darban-Sarokhalil D, Fooladi AA, Javadpour S, Hashemi A, Siavoshi F, Feizabadi
MM. Spoligotyping and drug resistance patterns of Mycobacterium tuberculosis
isolates from five provinces of Iran. Microbiol Open. 2013; 2(6): 988-996.
35. Hoffner S, Sahebi L, Ansarin K, Sabour S, Mohajeri P. Mycobacterium tuberculosis of the
Beijing genotype in Iran and the WHO Eastern Mediterranean Region: A meta-analysis. Microb
Drug Resist. 2017; 24(6): 693-698.
36. Teixeira Dantas NG, Noel Suffys P, Carvalho WS, Magdinier Gomes H, Refregier G, Sola C,
Kireopori Gomgnimbou M. Genetic diversity and molecular epidemiology of multidrug-resistant
Mycobacterium tuberculosis in Minas Gerais State, Brazil. BMC Infect Dis. 2015; 15: 306-316.
37. Liu Y, Tian M, Wang X, Wei R, Xing Q, Ma T, Jiang X, Li W, Zhang Z, Xue Y, Zhang X,
Wang W, Wang T, Hong F, Zhang J, Wang S, Li C. Genotypic diversity analysis of
Mycobacterium tuberculosis strains collected from Beijing in 2009, using spoligotyping and
VNTR typing. PLoS One. 2014; 9(9): 1067-1087.