بیوسنتز نانوذرات اکسید روی(ZnO) با استفاده از عصاره چای سبز و تاثیر ضدبیوفیلمی آن بر سویه های سودوموناس آئروجینوسا جدا شده از عفونت زخم
محورهای موضوعی : میکروب شناسی پزشکیبهروز شجاعی سعدی 1 , شیما چهرئی 2 , مهلا اسماعیلی 3 *
1 - مربی، گروه زیستشناسی، دانشکده علوم پایه، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.
2 - استادیار، گروه زیستشناسی، دانشکده علوم پایه، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.
3 - دانشجوی کارشناسی ارشد، گروه زیستشناسی، دانشکده علوم پایه، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.
کلید واژه: حداقل غلظت مهارکنندگی, بیوفیلم, عصاره چای سبز, سودوموناس آئروجینوسا, نانوذرات اکسید روی,
چکیده مقاله :
سابقه و هدف: به دلیل فعالیت ضدمیکروبی نانوذرات و عدم ایجاد مقاومت می توانند گزینههای مناسبی به منظور مقابله با تشکیل بیوفیلم باکتریایی باشند. هدف از این مطالعه بیوسنتز نانوذرات اکسید روی با استفاده از عصاره چای سبز و تعیین میزان تأثیر آن بر تشکیل بیوفیلم در جدایههای سودوموناس آئروجینوسا جدا شده از عفونت زخم بود.مواد و روشها: در این مطالعه مقطعی نانوذرات بیوسنتز شده توسط آنالیزهای پراش اشعه ایکس، طیف سنجی پراش انرژی پرتو ایکس، میکروسکوپ الکترونی روبشی و عبوری بررسی شدند. تعیین فعالیت ضدمیکروبی و حداقل غلظت مهارکنندگی نانوذرات با روش میکروبراث دایلوشن انجام شد. فعالیت ضدبیوفیلمی با تشکیل بیوفیلم به روش اُتول بررسی شد.یافتهها: بیوسنتز نانوذرات توسط آنالیزها تأیید گردید. اندازه نانوذرات در محدوده 10 تا 90 با متوسط زیر 40 نانومتر تعیین شد. نانوذرات در غلظتهای 250، 500 و 1000 میکروگرم بر میلیلیتر فعالیت ضدمیکروبی داشتند و حداقل غلظت مهارکنندگی 500 میکروگرم بر میلیلیتر گزارش شد. غلظت های 500 و 1000 میکروگرم بر میلیلیتر 25 تا 90 درصد تشکیل بیوفیلم را مهار کردند. اثرات ضدمیکروبی و ضدبیوفیلمی نانوذرات با افزایش غلظت آنها افزایش یافت.نتیجه گیری: بیوسنتز نانوذرات با عصاره مزایای متعددی مانند سادگی، ثبات مناسب، عدم صرف انرژی، صرف زمان کمتر، ضایعات غیرسمی، صرفه اقتصادی و قابلیت سنتز در مقیاس بزرگ را دارد. با توجه به خواص ضدمیکروبی و ضدبیوفیلمی کاربرد این نانوذرات به عنوان پوشش در تجهیزات پزشکی و صنایع غذایی پیشنهاد میگردد.
Background & Objectives: Owing to the antimicrobial activity of ZnO nanoparticles without causing resistance, such substances could be considered as an appropriate alternative to prevent bacterial biofilm formation. The aim of this study was to the biosynthesis of ZnO nanoparticles using green tea extract and determination of its effect on biofilm formation in Pseudomonas aeruginosa isolates separated from wound infection. Materials & Methods: In this cross-sectional study, biosynthetic nanoparticles were evaluated by X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy and transmission electron microscopy. Determination of antimicrobial activity and minimum inhibitory concentration of nanoparticles were done by micro broth dilution method. The antibiofilm activity was investigated using biofilm formation by O'Toole 2011 method. Results: The biosynthesis of nanoparticles was confirmed by analysis. The size of the nanoparticles was determined in the range of 10 to 90 with an average of less than 40 nm. The nanoparticles had anti-microbial activities in concentrations of 250, 500 and 1000 ug/mL and minimum inhibitory concentration of 500 ug/mL was reported. The antimicrobial and antibiofilm effects of the nanoparticles rose with increasing the concentrations. Conclusion: The biosynthesis of nanoparticles with the extract has a variety of benefits such as simplicity, good stability, without energy consumption, less time-consuming, non-toxic wastes, economical efficiency, and large scale synthesis capability. According to the antimicrobial and antibiofilm properties, the use of these nanoparticles as coatings in medical equipment and food industries is recommended.
Pseudomonas aeruginosa isolates resistant to third-generation cephalosporins in clinical
samples of hospitalized patients in hospitals of Qom City, Iran. Qom Univ Med Sci J. 2016; 10
(1): 48-55. [In Persian].
2. Rajaie S, Mohammadi Sichani M, Yousefi MH. Study on the inhibitory activity of zinc oxide
nanoparticles against Pseudomonas aeruginosa isolated from burn wounds. Qom Univ Med Sci
J. 2015; 9(1-2): 30-37. [In Persian].
3. Saghar Hendiani. 2013. Comparison of antibiofilm activity of silver nanoparticles and some
antimicrobial agents against biofilm producing Acinetobacter spp. M.Sc. Basic Science Alzahra
University. [In Persian].
4. Tabasi M, Javadinia Sh, Masoumi Asl H, Nemati A, Azizian R, Alipour M, Tabatabaei A.
Survey of Antibiotic Resistance and Biofilm Formation in Pseudomonas aeruginosa Isolated
from Patients with Urinary Tract Infection. Iran J Infect Dis Trop Med. 2017; 22(77): 63-68.
[In Persian].
5. Ghotaslou R, Salahi Eshlaqghi B. Biofilm of Pseudomonas Aeruginosa and New Preventive
Measures and Anti- Biofilm Agents. J Rafsanjan Univ Med Sci. 2013; 12 (9) :747-768.
[In Persian].
6. Rajabpour M, Arabestani M R, Yousefi mashof R, Alikhani M Y. MIC determination of
Pseudomonas aeruginosa strains were isolated from clinical specimens of patients admitted to
educational hospitals in Hamedan (90-91). Iran J Med Microbiol. 2013; 7(3): 18-25.
[In Persian].
7. Hoseinzadeh E, Samarghandi M, Alikhani M, Asgari G, Roshanaei G. Effect of zinc oxide
(ZnO) nanoparticles on death kinetic of Gram-negative and positive bacterium. J Babol Univ
Med Sci. 2012; 14(5): 13-19. [In Persian]
8. Khalili H, Baghbani-arani F. Green synthesized of silver nanoparticles using Artemisia
tschernieviana extract and evaluation of cytotoxicity effects on human colon cancer (HT29) and
normal (HEK293) cell lines. J Ilam Univ Med Sci. 2017; 25(2): 91-100. [In Persian]
9. obrucka R, ługaszewska J. Biosynthesis and antibacterial activity of Zno nanoparticles using
Trifolium Pratense flower extract. Saudi J Biol Sci. 2016; 23(4): 517-523.
10. Pourzereshki N, Naserpour Farivar T, Peymani A. Presence of alginate among multidrug
resistant Pseudomonas aeruginosa isolated from clinical samples in Qazvin and Tehran
hospitals. J Clin Res Paramed Sci. 2014; 3(4): 257-263. [In Persian]
11. Emrani Sh, Zhiani R, Dafe Jafari M. The biosynthesis of silver nanoparticles using plants of
Glycyrrhiza glabra and Mentha piperata and its antimicrobial effect on some bacteria that cause
tooth decay. J Rafsanjan Univ Med Sci. 2018; 16(10): 953-968. [In Persian]
12. O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011; 30(47): 1-2.
13. Abbasvali M, Ebrahimi Kahrizsangi A, Shahriari F. Evaluation of the inhibitory effects of zinc
oxide nanoparticles on biofilm formation of some foodborne bacterial pathogens. Iran J Med
Microbiol. 2017; 11(5): 115-124. [In Persian]
14. Hosseini S. 2010. The comprative evaluation of inhibitory activity of biocide SDS & Nano
particle ZnO on biofilm formation of Candida albicans. M.Sc. Medical Science Tarbiat
Modares University. [In Persian]
15. Nabipour Y, Rostamzad A, Ahmadi S. The evaluation of antimicrobial properties of zink and
silver nanoparticles on pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus
aureus. J Ilam Univ Med Sci. 2015; 23(5): 173-181. [In Persian]
16. Rezaei A, Pourali P, Yahyaei B. Assessment of the cytotoxicity of gold nanoparticles produced
by Bacillus cereus on hepatocyte and fibroblast cell lines. J Mol Cel Res. 2016; 29(3): 291-301.
[In Persian]
17. Senthilkumar SR, Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide
(ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci. 2014;
6(6): 461-465.
18 .Sutradhar P, Saha M. Synthesis of zinc oxide nanoparticles using tea leaf extract and its
application for solar cell. Bull Mater Sci. 2015; 38(3): 653-657.
19. Dhanemozhi AC, Rajeswari V, Sathyajothi S. Green synthesis of zinc oxide nanoparticle using
green tea leaf extract for supercapacitor application. Mater Today Proc. 2017; 4(2): 660-667.
20. Nava OJ, Luque PA, Gómez-Gutiérrez CM, Vilchis-Nestor AR, Castro-Beltrán A,
Mota-González ML, Olivas A. Influence of Camellia sinensis extract on zinc oxide nanoparticle
green synthesis. J Mol Struct. 2017; 11(34): 121-125.
21. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles an antimicrobial
study. Sci Technol Adv Mater. 2008; 9(3): 1-7.
22. Yousef JM, Danial EN. In vitro antibacterial activity and minimum inhibitory concentration of
zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci (El Monte).
2012; 2(4): 38-42.
23. Saadat M, Roudbar Mohammadi S, Yadegari M, Eskandari M, Khavari-nejad R. An assessment
of antibacterial activity of ZnO nanoparticles, Catechin, and EDTA on standard strain of
Pseudomonas aeroginusa. J Jahrom Univ Med Sci. 2012; 10(1): 13-19. [In Persian]
24. Hoseinzadeh E, Samargandi M R, Alikhani M Y, Roshanaei G, Asgari G. Antimicrobial
efficacy of zinc oxide nanoparticles suspension against gram negative and gram positive
bacteria. Iran J Health Environ. 2012; 5(3): 331-342. [In Persian]
25. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. Reactive oxygen
species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical
determination. PloS one. 2014; 9(11): 1-9.
26. Vincent MG, John NP, Narayanan PM, Vani C, Murugan S. In vitro study on the efficacy of
zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J Appl Pharm Sci. 2014; 4(7): 41.
27. Lee JH, Kim YG, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm
formation and virulence factor production. Microbiol Res. 2014; 169(12): 888-896.
28. Eshed M, Lellouche J, Gedanken A, Banin E. A Zn‐Doped CuO nanocomposite shows
enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to
nanosized CuO. Adv Funct Mater. 2014; 24(10): 1382-1390.
29. Hassani Sangani M, Nakhaei Moghaddam M, Forghanifard MM. Inhibitory effect of zinc oxide
nanoparticles on Pseudomonas aeruginosa biofilm formation. Nanomed J. 2015; 2(2): 121-128.
30. García‐Lara B, Saucedo‐Mora MÁ, Roldán‐Sánchez J., Pérez‐Eretza B, Ramasamy M, Lee J,
García‐Contreras R. Inhibition of quorum‐sensing‐dependent virulence factors and biofilm
formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles.
Lett Appl Microbiol. 2015; 61(3): 299-305.
31. Akhil K, Jayakumar J, Gayathri G, Khan SS. Effect of various capping agents on
photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J Photochem
Photobiol B. 2016; 160: 32-42.
_||_
Pseudomonas aeruginosa isolates resistant to third-generation cephalosporins in clinical
samples of hospitalized patients in hospitals of Qom City, Iran. Qom Univ Med Sci J. 2016; 10
(1): 48-55. [In Persian].
2. Rajaie S, Mohammadi Sichani M, Yousefi MH. Study on the inhibitory activity of zinc oxide
nanoparticles against Pseudomonas aeruginosa isolated from burn wounds. Qom Univ Med Sci
J. 2015; 9(1-2): 30-37. [In Persian].
3. Saghar Hendiani. 2013. Comparison of antibiofilm activity of silver nanoparticles and some
antimicrobial agents against biofilm producing Acinetobacter spp. M.Sc. Basic Science Alzahra
University. [In Persian].
4. Tabasi M, Javadinia Sh, Masoumi Asl H, Nemati A, Azizian R, Alipour M, Tabatabaei A.
Survey of Antibiotic Resistance and Biofilm Formation in Pseudomonas aeruginosa Isolated
from Patients with Urinary Tract Infection. Iran J Infect Dis Trop Med. 2017; 22(77): 63-68.
[In Persian].
5. Ghotaslou R, Salahi Eshlaqghi B. Biofilm of Pseudomonas Aeruginosa and New Preventive
Measures and Anti- Biofilm Agents. J Rafsanjan Univ Med Sci. 2013; 12 (9) :747-768.
[In Persian].
6. Rajabpour M, Arabestani M R, Yousefi mashof R, Alikhani M Y. MIC determination of
Pseudomonas aeruginosa strains were isolated from clinical specimens of patients admitted to
educational hospitals in Hamedan (90-91). Iran J Med Microbiol. 2013; 7(3): 18-25.
[In Persian].
7. Hoseinzadeh E, Samarghandi M, Alikhani M, Asgari G, Roshanaei G. Effect of zinc oxide
(ZnO) nanoparticles on death kinetic of Gram-negative and positive bacterium. J Babol Univ
Med Sci. 2012; 14(5): 13-19. [In Persian]
8. Khalili H, Baghbani-arani F. Green synthesized of silver nanoparticles using Artemisia
tschernieviana extract and evaluation of cytotoxicity effects on human colon cancer (HT29) and
normal (HEK293) cell lines. J Ilam Univ Med Sci. 2017; 25(2): 91-100. [In Persian]
9. obrucka R, ługaszewska J. Biosynthesis and antibacterial activity of Zno nanoparticles using
Trifolium Pratense flower extract. Saudi J Biol Sci. 2016; 23(4): 517-523.
10. Pourzereshki N, Naserpour Farivar T, Peymani A. Presence of alginate among multidrug
resistant Pseudomonas aeruginosa isolated from clinical samples in Qazvin and Tehran
hospitals. J Clin Res Paramed Sci. 2014; 3(4): 257-263. [In Persian]
11. Emrani Sh, Zhiani R, Dafe Jafari M. The biosynthesis of silver nanoparticles using plants of
Glycyrrhiza glabra and Mentha piperata and its antimicrobial effect on some bacteria that cause
tooth decay. J Rafsanjan Univ Med Sci. 2018; 16(10): 953-968. [In Persian]
12. O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011; 30(47): 1-2.
13. Abbasvali M, Ebrahimi Kahrizsangi A, Shahriari F. Evaluation of the inhibitory effects of zinc
oxide nanoparticles on biofilm formation of some foodborne bacterial pathogens. Iran J Med
Microbiol. 2017; 11(5): 115-124. [In Persian]
14. Hosseini S. 2010. The comprative evaluation of inhibitory activity of biocide SDS & Nano
particle ZnO on biofilm formation of Candida albicans. M.Sc. Medical Science Tarbiat
Modares University. [In Persian]
15. Nabipour Y, Rostamzad A, Ahmadi S. The evaluation of antimicrobial properties of zink and
silver nanoparticles on pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus
aureus. J Ilam Univ Med Sci. 2015; 23(5): 173-181. [In Persian]
16. Rezaei A, Pourali P, Yahyaei B. Assessment of the cytotoxicity of gold nanoparticles produced
by Bacillus cereus on hepatocyte and fibroblast cell lines. J Mol Cel Res. 2016; 29(3): 291-301.
[In Persian]
17. Senthilkumar SR, Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide
(ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci. 2014;
6(6): 461-465.
18 .Sutradhar P, Saha M. Synthesis of zinc oxide nanoparticles using tea leaf extract and its
application for solar cell. Bull Mater Sci. 2015; 38(3): 653-657.
19. Dhanemozhi AC, Rajeswari V, Sathyajothi S. Green synthesis of zinc oxide nanoparticle using
green tea leaf extract for supercapacitor application. Mater Today Proc. 2017; 4(2): 660-667.
20. Nava OJ, Luque PA, Gómez-Gutiérrez CM, Vilchis-Nestor AR, Castro-Beltrán A,
Mota-González ML, Olivas A. Influence of Camellia sinensis extract on zinc oxide nanoparticle
green synthesis. J Mol Struct. 2017; 11(34): 121-125.
21. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles an antimicrobial
study. Sci Technol Adv Mater. 2008; 9(3): 1-7.
22. Yousef JM, Danial EN. In vitro antibacterial activity and minimum inhibitory concentration of
zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci (El Monte).
2012; 2(4): 38-42.
23. Saadat M, Roudbar Mohammadi S, Yadegari M, Eskandari M, Khavari-nejad R. An assessment
of antibacterial activity of ZnO nanoparticles, Catechin, and EDTA on standard strain of
Pseudomonas aeroginusa. J Jahrom Univ Med Sci. 2012; 10(1): 13-19. [In Persian]
24. Hoseinzadeh E, Samargandi M R, Alikhani M Y, Roshanaei G, Asgari G. Antimicrobial
efficacy of zinc oxide nanoparticles suspension against gram negative and gram positive
bacteria. Iran J Health Environ. 2012; 5(3): 331-342. [In Persian]
25. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. Reactive oxygen
species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical
determination. PloS one. 2014; 9(11): 1-9.
26. Vincent MG, John NP, Narayanan PM, Vani C, Murugan S. In vitro study on the efficacy of
zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J Appl Pharm Sci. 2014; 4(7): 41.
27. Lee JH, Kim YG, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm
formation and virulence factor production. Microbiol Res. 2014; 169(12): 888-896.
28. Eshed M, Lellouche J, Gedanken A, Banin E. A Zn‐Doped CuO nanocomposite shows
enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to
nanosized CuO. Adv Funct Mater. 2014; 24(10): 1382-1390.
29. Hassani Sangani M, Nakhaei Moghaddam M, Forghanifard MM. Inhibitory effect of zinc oxide
nanoparticles on Pseudomonas aeruginosa biofilm formation. Nanomed J. 2015; 2(2): 121-128.
30. García‐Lara B, Saucedo‐Mora MÁ, Roldán‐Sánchez J., Pérez‐Eretza B, Ramasamy M, Lee J,
García‐Contreras R. Inhibition of quorum‐sensing‐dependent virulence factors and biofilm
formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles.
Lett Appl Microbiol. 2015; 61(3): 299-305.
31. Akhil K, Jayakumar J, Gayathri G, Khan SS. Effect of various capping agents on
photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J Photochem
Photobiol B. 2016; 160: 32-42.