ارزیابی تاثیر مقولههای الگوی مدیریت مالی هوشمند در شرکتهای پالایش گازی
محورهای موضوعی : مدیریت مالی
سید علی صدیقی پور
1
,
شاهرخ بزرگمهریان
2
*
,
اله کرم صالحی
3
1 - گروه مدیریت مالی، واحد مسجدسلیمان، دانشگاه آزاد اسلامی، مسجدسلیمان، ایران
2 - گروه حسابداری، واحد مسجدسلیمان، دانشگاه آزاد اسلامی، مسجدسلیمان، ایران
3 - گروه حسابداری ، واحد مسجدسلیمان، دانشگاه آزاد اسلامی ، مسجدسلیمان، ایران
کلید واژه: مدیریت مالی هوشمند, شرکتهای پالایش گازی, الگوی معادلات ساختاری,
چکیده مقاله :
در این پژوهش، به ارزیابی تاثیر مقولههای الگوی مدیریت مالی هوشمند در شرکتهای پالایش گازی پرداخته شده است. جامعه آماري پژوهش شامل مدیران و اعضای هیات مدیره، مدیران و کارشناسان مالی و مدیران و کارشناسان بخش IT در شرکتهای پالایش گازی میباشند که با بهرهگیری از روش نمونهگیري در دسترس، حجم نمونه به تعداد 302 نفر تعیین گردید. ابزار گردآوری اطلاعات، پرسشنامه محقق ساخته است و آزمون فرضیهها با روش معادلات ساختاری مبتنی بر رویکرد کمترین مربعات جزئی و با استفاده از نرم افزار پی ال اس صورت گرفت. یافتههای حاصل از معادلات ساختاری بیانگر ارتباط مطلوب در ساختار عاملی الگو میباشد، بدین صورت که شرایط علی، زمینهای و مداخلهگر بر پدیده مقوله محوری (مدیریت مالی هوشمند) ارتباط معناداری دارد. همچنین مقوله محوری بر راهبردها و در نهایت، راهبردها اثر میانجی و معناداری بر روابط بین مقوله محوری بر پیامدها دارد. بطور کلی نتایج حاکی از آن است که الگوی مدیریت مالی هوشمند در شرکتهای پالایش گازی از قابلیت پیش بینی بالایی برخوردار بوده و میتوان از آن به عنوان عوامل مؤثر بر مدیریت مالی هوشمند بهره گرفت.
In this paper, the impact of the categories of intelligent financial management model in gas refining firms has been evaluated. The statistical population includes managers and the directors' board, financial managers and experts, and IT managers in gas refining companies, which the sample was determined as 302 people by using a convenient method. A researcher-made questionnaire gathered data and the hypotheses were tested with the structural equations model based on the partial least squares approach and using PLS software. The findings from the structural equations suggest the desired relationship in the model factor structure, so the causal, contextual, and intervening conditions have a significant relationship with the axial category (intelligent financial management). Also, the axial category on the strategies and finally, the strategies have a mediating and meaningful effect on the relationships between the axial category on the consequences. In general, the results indicate that the model of intelligent financial management in gas refining firms has high predictability and can be used as effective factors for intelligent financial management.
Chen, Y. (2021). Smart Financial Management: Integration of AI and Big Data. Journal of Financial Technology, 9(2), 101-117.
Chen, Y., and Li, Z. (2023). Global financial connectivity and smart management. Journal of Financial Technology, 10(2), 98-115.
Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd ed.). Sage Publications, Inc. https://doi.org/10.4135/9781452230153
Deng, X. (2023). Intelligent financial eco-management model based on perceptron model. Applied Mathematics and Nonlinear Sciences, 9(1). 10.2478/amns.2023.2.00300
Gao, T., Wang, C., Zheng, J., Wu, G., Ning, X., Bai, X., Yang, J., & Wang, J. (2023). A smoothing Group Lasso based interval type-2 fuzzy neural network for simultaneous feature selection and system identification. Knowledge-Based Systems, 280(25), 111028. 10.1016/j.knosys.2023.11102
Ghazi, E. and Shabazi, H. (2024). The role of artificial intelligence in financial management (necessity, applications and challenges). 7th International Conference in Management & Industry. (In Persian).
Hair, J.F., Sarstedt, M. and Ringle, C.M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, Vol. 53 No. 4, pp. 566-584. https://doi.org/10.1108/EJM-10-2018-0665
Henseler, J. Ringle, CM. Sinkovics, R.R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319.
Heydari, H. and Babaee, S. (2013). Crude oil price contagion to the growth of Industry and Mine sector in Iran: An approach to Markov-Switching Models. Iranian Journal of Energy, 16(3), 1-16. http://necjournals.ir/article-1-546-fa.html. (In Persian).
Huang L, and Lu H. (2024). Design of intelligent financial data management system based on higher-order hybrid clustering algorithm. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.1799
Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14(1), 13. 10.1186/s11782-020-00082-6
Huang, S. (2024). Design and Implementation of an Intelligent Financial Management System Based on Enterprise Legal System. Journal of Organizational and End User Computing 36(1), 1-25. 10.4018/JOEUC.350224
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
Johnson, P., and Adams, K. (2022). Cloud computing and financial analytics: Revolutionizing finance. Journal of Applied Financial Technology, 14(1), 66-80.
Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable finance: Insights from big data analytics through machine learning of scholarly research. Annals of Operations Research, •••, 1–44. 10.1007/s10479-021-04410-835002001
Lai, M. (2022). Smart Financial Management System Based on Data Ming and Man-Machine Management. Wireless Communications and Mobile Computing,
Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
Lee, H., & Wong, J. (2021). Big data analytics in financial management. Journal of Data Science and Finance, 19(4), 207-222.
Lee, I., & Shin, Y. J. (2020). Machine learning for enterprises: Applications, algorithm selection, and challenges. Business Horizons, 63(2), 157–170. 10.1016/j.bushor.2019.10.005
Lu, M. (2023). Research on dynamic time warping algorithm and intelligent financial management system based on heterogeneous cellular network. Soft Comput. https://doi.org/10.1007/s00500-023-08927-x
Miller, R., Smith, A., and Lee, T. (2023). Fintech and agile financial management: A global perspective. International Journal of Fintech and Innovation, 8(2), 121-140.
Musa, A. (2023). Revolutionizing Oil and Gas Industries with Artificial Intelligence Technology. International Journal of Computer Sciences and Engineering, 11(5), 20-30
Nasle Farda. the new link of productivity in the oil value chain, published online in https://akhbaresanat.ir/newspaper/BlockPrint/145433. (In Persian).
Ochieng, E. G., Ominde, D., & Zuofa, T. (2024). Potential application of generative artificial intelligence and machine learning algorithm in oil and gas sector: Benefits and future prospects. Technology in Society, 79, 102710. https://doi.org/10.1016/j.techsoc.2024.102710
Qasemi, R., et al. (2023). The Impact of Artificial Intelligence on Financial Decision-Making in Oil and Gas Industries. Energy Finance Review, 22(1), 34-49.
Rahman, M. W., Islam, R., Hasan, A., Bithi, N. I., Hasan, M. M., & Rahman, M. M. (2022). Intelligent waste management system using deep learning with IoT. Journal of King Saud University. Computer and Information Sciences, 34(5), 2072–2087. 10.1016/j.jksuci.2020.08.016
Ravi, V., & Kamaruddin, S. (2017). Big data analytics enabled smart financial services: opportunities and challenges. In International Conference on Big Data Analytics (pp. 15-39). Springer, Cham.
Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3(2), 158. 10.1007/s42979-022-01043-x35194580
Sedighipour, SA., Bozorgmehrian, S., Salehi, AK. (2024). Designing an Intelligent Financial Management Model in Gas Refining Companies using Grounded Theory, Journal of investment knowledge, Articles in Press. (In Persian).
Stone, M., and Geisser, F. (1975). Cross validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36(2), 111-147.
Tenenhaus, M.; Vinizi, V, E. Cgatelin, Y. M.; Lauro, C. (2005). PLS path modeling, Computational Statistics and Data Analysis, 48 (1), 159-20.
Wilson, T., & Garcia, M. (2022). The Role of Innovation in Financial Management. Journal of Applied Financial Strategies, 18(1), 77-89.
Zakaria, S., Abdul Manaf, S.M. Amron, M.T. and Mohd Suffian, M.T (2023). Has the World of Finance Changed? A Review of the Influence of Artificial Intelligence on Financial Management Studies. Information Management and Business Review, 15(4): 420-432