بهينه سازي سبد میانگین واریانس چولگی عملکرد مبتني بر راهبردهای مومنتوم و معکوس
محورهای موضوعی : مدیریت مالی
همایون سلطان زاده
1
,
رضا کیخایی
2
*
,
عبدالمجید عبدالباقی عطاآبادی
3
,
حسین آرمان
4
1 - گروه مديريت، واحد نجف آباد، دانشگاه آزاد اسلامي، نجف آباد، ايران.
2 - گروه ریاضی، دانشگاه مرکز خوانسار، اصفهان، اصفهان، ايران(نويسنده مسئول)
3 - دانشیار گروه مهندسی صنایع، دانشگاه صنعتي، شاهرود، شاهرود، ايران.
4 - گروه مديريت، واحد نجف آباد، دانشگاه آزاد اسلامي، نجف آباد، ايران.
کلید واژه: مدل ميانگين واريانس, چولگي, سبد بهينه, سبد بهينه مومنتوم, سبد بهينه معکوس,
چکیده مقاله :
هدف
در این پژوهش، با استفاده از راهبرد سرمایهگذاری مومنتوم و معکوس و ترکیب آن با فرمول بهینهسازی مارکوویتز سعی در ایجاد مدل جدیدی شد که در آن همزمان با افزایش بازده، ریسک کاهش یافته با این تفاوت که در این مدل وزن سهامها یکسان در نظر گرفته نشد.
روششناسی
در این پژوهش بهطور مشخص از روشهای بهینهسازی میانگین واریانس و چولگی استفاده شد. برای نشان دادن رویکردهای پیشنهادی، از دادههای جمعآوریشدۀ ۱۶۰ شرکت پذیرفتهشده در بورس اوراق بهادار تهران از سال 1393 تا 1401 استفاده شد. از این دادهها برای تشکیل و بهینهسازی سبدهای میانگین واریانس چولگی مبتنی بر راهبردهای مومنتوم و معکوس و مقایسۀ عملکرد آنها استفاده شد.
یافتهها
نتایج نشان داد راهبرد مومنتوم مبتنی بر چولگی در بهینهسازی سبد، دارای عملکرد و سودآوری بهتری نسبت به دیگر راهبردها است.
اصالت / ارزشافزوده علمی
در این مدل وزن سهامها یکسان در نظر گرفته نشد و سرمایهگذار با علم به داشتن اطلاعات دقیقتر نسبت به تشکیل و بهبود سبد سرمایه خود میتواند اقدام نماید
Objective:
This study aims to develop a new model by using momentum and reversal investment strategies combined with the Markowitz optimization formula, which simultaneously increases returns while reducing risk. Unlike traditional models, this model does not assume equal weights for stocks.
Methodology:
Specifically, this research employs mean-variance and skewness optimization methods. To demonstrate the proposed approaches, data from 160 companies listed on the Tehran Stock Exchange between 2014 and 2022 were used. These data were utilized to construct and optimize mean-variance-skewness portfolios based on momentum and reversal strategies and to compare their performance.
Findings:
The results showed that the skewness-based momentum strategy in portfolio optimization outperforms other strategies in terms of performance and profitability.
Originality / Scientific Value:
In this model, stock weights are not considered equal, allowing investors with more precise information to better form and improve their investment portfolios.
Afsar, A., Helyel,F. (2017). A Hybrid Approach to Portfolio Optimization Using Technical Analysis and Data Mining, Modern Researches in Decision Making, 2(2), 1-22. [In Persian] https://journal.saim.ir/article_26785.html
Bhattacharyya, R., Hossain, S.A., & Kar, S. (2014). Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. Journal of King Saud University – Computer and Information Sciences, 26, 79–87.
https://doi.org/10.1016/j.jksuci.2013.04.001
Chaweewanchon, A., & Chaysi Dehghanri, R. (2022). Markowitz mean-variance portfolio optimization with predictive stock selection using machine learning. International Journal of Financial, 10(64), 1-19.
https://doi.org/10.3390/ijfs10030064
DeBondt, W. F., & Thaler, R. H. (1985). Does the Stock Market Overreact? Journal of Finance, 40, 793-805. https://doi.org/10.1111/j.1540-6261.1985.tb05004.x
Dreman, D.N., & M.A. Berry. (1995). Overreaction underreaction and the low supply effect, Financial Analysts Journal, 21-30.
https://doi.org/10.2469/faj.v51.n3.1903
Fernandez, A., & Gomez, S. (2007). Portfolio Selection Using Neural Networks. Computer & Operation Research, 1177-1191.
https://doi.org/10.1016/j.cor.2005.06.017
Ghadrdan, E., Faghani Makrani, KH., & Solgi, S., Discuss Optimal Portfolio Efficiency in terms of Kurtosis Model in Phase environment, Financial Economics, 2019, 8(31), 249-264. [In Persian]
https://jik.srbiau.ac.ir/article_14775.html
Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: implications for stock marketefficiency. Journal of Finance, 48, 65-91. https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
Kebryaie, A., & Dehghan, A., (2020). Evaluation of Determining Parameters in Iran Stock Market, Financial Engineering and Portfolio Management, 11(43), 431-450. [In Persian] https://journals.iau.ir/article_676337.html
Keshavars, S., Vaziri Sereshk, M., Abdolbaghi Ataabadi, A., & Arman, M. (2022). Trading strategies based on trading systems: Evidence from the performance of technical indicators. Journal of System Management, 8(1), 37-50. [In Persian]
https://doi.org/10.30495/jsm.2022.1937933.1509
Kima, W.C., Fabozzi, F.J., Cheridito, P., & Fox, C. (2014). Controlling portfolio skewness and kurtosis without directly optimizing third and fourth moments. Economics Letters, 122.154–158.
https://doi.org/10.1016/j.econlet.2013.11.024
Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical challenges and current trends, European Journal of Operational Research, 234(2), 356-371. https://doi.org/10.1016/j.ejor.2013.10.060
Khani, A., Botshekan, M., & Athari, B., The Evaluation of the Managed Momentum Strategy in the Listed Companies on Tehran Stock Exchange, Journal of Financial Management Strategy, 2020, 8(31), 23-50. [In Persian] Doi:10.22051/jfm.2020.26586.2108
Ho, H. C., & Wang, H. C. (2018). Momentum lost and found in corporate bond returns. Journal of Financial Markets, 38, 60-82. https://doi.org/10.1016/j.finmar.2017.10.003
Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 77-91. https://doi.org/10.2307/2975974
Marzban, H. A., sotudeh, R., & piri, H. (2022). Investigating the Relationship between Multiple Variables and Momentum and Inverse Profits in Tehran Capital Market. Islamic Economics and Banking, 10 (37), 159-183. [In Persian] https://mieaoi.ir/article-1-1136-fa.html
Mattei, M. D. (2018). Enhanced Portfolio Performance Using a Momentum Approach to Annual Rebalancing. International Journal of Financial Studies, 6 (1), 15. https://doi.org/10.3390/ijfs6010015
Ronning, H. S. (2016). On Algorithmic Portfolio Optimization for a Momentum Investor. Norwegian University of Science and Technology.
Ryou, H., Bae, H, H., Lee, H, S., & Oh, K, J. (2020). Momentum Investment Strategy Using a Hidden Markov Model. Sustainability, 12, 31-70. https://doi.org/10.3390/su12177031
Samuelson, P. A. (1970). The fundamental approximation theorem of portfolio analysis in terms of means, variances, and higher moments. Review of Economic Studies, 37(4), 537–542. https://doi.org/10.2307/2296483
Safari, A., & Asana, M. (2019). An Optimist Model for Stock based on Momentum Business Strategy. Financial Knowledge of Securities Analysis, 12(41), 143-153. [In Persian]
Sarraf, F., Hashemi Nejad, S., & Soodi, G. (2021). Investors Sentiment and Momentum Strategy. Accounting & Auditing Studies, 38, 53-68. [In Persian] https://www.sid.ir/paper/965731/fa.
Soutes, D. O., & Schvirck, E. (2006). Forms of measurement of the income and the consequences in the calculation of the ROA. Brazilian Business Review, 3(1), 73-85.
Syamni1, G., Wardhiah, Permata Sari, D., & Nafis, B. (2020). A Review of Momentum Strategy in Capital Market. Advances in Social Science, Education and Humanities Research, 495, 172-176. 10.2991/assehr.k.210125.029
Woodside Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Interfaces with Other Disciplines Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213, 538-550. https://doi.org/10.1016/j.ejor.2011.03.030Get rights and content
Wiest, T. (2023). Momentum: what do we know 30 years after Jegadeesh and Titman’s seminal paper? Financial Markets and Portfolio Management, 37, 95–114. https://doi.org/10.1007/s11408-022-00417-8.
Yu, L., Fung, H. G., & Leung, W. K. (2019). Momentum or contrarian trading strategy: Which one works better in the Chinese stock market. Journal of International Review of Economics & Finance, 62, 87-105. https://doi.org/10.1016/j.iref.2019.03.006
S. A. Zenios. (2008). Practical financial optimization. Wiley-Blackwell, Chichester, UK.