Development and Evaluation of Nanomagnetic Carrier for the Controlled Loading and Release of Celecoxib
Subject Areas : Bio MaterialsShabnam Ahmadvand 1 , Maryam Kargar Razi 2 * , Babak Sadeghi 3 , Seyedeh Sara Mirfazli 4
1 - Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
2 - Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
3 - Department of Chemistry, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
4 - Department of Medicinal Chemistry, School of Pharmacy International Campus, Iran University of Medical Sciences, Tehran, Iran
Keywords: nanocomposite, TGA, Magnetite, Celecoxib, Dynamic Light Scattering (DLS),
Abstract :
The aim of the present study was to develop synthesize, characterize, and find many applications of functionalized metal oxide nanoparticles. Herein, a new strategy is developed to functionalize magnetite nanoparticles to improve their performances of cerium oxide-functionalized Fe3O4@SiO2@CeO2 magnetic nanoparticles (FSC). In this study, after preparing optimized FSC, characterization and identification of their chemical structure were carried out by FT-IR, FESEM, VSM, TGA, DLS, and XRD. Afterward, the functionalized nanoparticles were examined in the delivery of celecoxib as an active drug model involving cerium oxide and hydroxyl functional groups. The results with respect to particle size, present investigation indicate that the formulations (mFSC=5 mg, pH=3.3) can be considered as best among various formulations. Dynamic light scattering (DLS) techniques used to measure particle size and zeta potential distribution revealed successful preparation of an Fe3O4@SiO2@CeO2 nanocomposite prepared on Fe3O4@SiO2 (FS), with a hydrodynamic size distribution of 45 nm.
[1] Van, R. S.; Habibovic, P. Enhancing regenerative approaches with nanoparticles. J. R. Soc. Interf. Vol. 14, No. 129, 2017, pp. 20170093.
[2] Conte, R.; Marturano, V.; Peluso, G. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci. Vol. 18, No. 4, 2017, pp. 709-714.
[3] Arbos, P.; Campanero, M. A.; Arangoa, M. A.; Renedo, M. J.; Irache, J. M. Influence of the surface characteristics of PVM/ MA nanoparticles on their bioadhesive properties. J. Control. Release. Vol. 89, No. 1, 2003, pp. 19-30.
[4] Ginebra, M. P.; Traykova, T.; Planell, J. A. Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Rel. Vol. 113, No. 2, 2006, pp. 102-107.
[5] Patri, A. K.; Majoros, L. J.; Baker, J. R. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Bio. Vol. 6, No. 4, 2002, pp. 466-471.
[6] Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomater. Vol. 27, No. 18, 2006, pp. 3413-3431.
[7] Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. Vol. 9, 2010, pp. 172-178.
[8] Zahir Abadi, I. J.; Sadeghi, O.; Lotfizadeh, H. R.; Tavassoli, N.; Amani, V.; Amini, M. M. Novel modified manoporous silica for oral drug delivery: Loading and release of clarithromycin. J. Sol Gel Sci. Technol. Vol. 61, No. 1, 2012, pp. 90-95.
[9] Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. Vol. 24, No. 12, 2012, pp. 1504-1534.
[10] Van, R. S.; Habibovic, P. Enhancing regenerative approaches with nanoparticlesJ. R. Soc. Interf. Vol. 14, No. 129, 2017, pp. 20170093.
[11] Tang, Q.; Xu, Y.; Wu, D.; Sun, Y.; Wang, J. Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. Control. Rel. Vol. 114, No. 1, 2006, pp. 41-46.
[12] Trewyn, B. G.; Giri, S.; Slowing, I. I.; Lin, V. S. Y. Mesoporous silica nanoparticle based controlled release, drug delivery and biosensor systems. Chem. Commun. Vol. 31, No. 3, 2007, pp. 3236-3241.
[13] Yang, Q.; Wang, S. H.; Fan, P.; Wang, L.; Di, Y.; Lin, K.; Xiao, F. S. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem. Mater. Vol. 17, No. 1, 2005, pp. 59-68.
[14] Chomchoey, N.; Bhongsuwan, D.; Bhongsuwan, T. Magnetic properties of magnetite nanoparticles synthesized by oxidative alkaline hydrolysis of iron powder. J. Nat. Sci. Vol. 44, No. 12, 2010, pp. 963-971.
[15] Hoa, L. T. M.; Dung, T. T.; Danh, T. M.; Duc, N. H.; Chien, D. M. Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. J. Phys. Vol. 187, No. 1, 2009, pp. 12-18.
[16] Acar, H. Y. C.; Garaas, R. S.; Syud, F.; Bonitatebus, P.; Kulkarni, A. M. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J. Magn. Magn. Mater. Vol. 293, No. 1, 2005, pp. 1-7.
[17] Mohammadyan, E.; Ghafuri, H.; Kakanejadifard, A.; Synthesis and characterization of a magnetic Fe3O4@CeO2 nanocomposite decorated with Ag nanoparticle and investigation of synergistic effects of Ag on photocatalytic activity. Optik. Vol. 166, 2018, pp. 39-48.
[18] Moradi, B.; Nabiyouni, Gh. R,; Ghanbari, D.; Rapid photo-degradation of toxic dye pollutants: green synthesis of mono-disperse Fe3O4–CeO2 nanocomposites in the presence of lemon extract. J. Mater. Sci: Mater. Elect. Vol. 29, No. 5-6, 2018, pp.11065-11080.
[19] Rizzuti, A.; Dipalo, C. M.; Allegereta, I.; Terzano, R.; Cioffi, N.; Microwave-assisted solvothermal synthesis of Fe3O4–CeO2 nanocomposite and their catalytic activity in the imine formation from benzyl alcohol and aniline. Catalyst. Vol. 10, No. 1325, 2020, pp. 1-22.
[20] Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Phanichphant, S. Synthesis of Fe3O4/SiO2/CeO2 core-shell magnetic and their application as photocatalyst. J. Nanosci. Nanotechnol. Vol. 14, No. 10, 2014, pp. 7756-7762.
[21] Huang, Y.; Zhang, L.; Huan, W.; Xiaojuan, L.; Yang, Y. A study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method. Glass Phys. Chem. Vol. 36, No. 3, 2010, pp. 325-331.
[22] Saadatjooa, N.; Golshekana, M. Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo [α] xanthenone derivatives. J. Mol. Cat. A: Chem. Vol. 377, No. 5, 2013, pp. 173-179.
[23] Donga, Y.; Wai, K. N.; Shen, S.; Kim, S.; Tan, R. B. H. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int. J. Pharm. Vol. 375, No. 1-2, 2009, pp. 84-88.
[24] Maniya, N. H.; Sanjaykumar, R. P.; Murthy, Z. V. P. Controlled delivery of celecoxib from porous silicon micro- and nanoparticles. Appl. Sur. Sci. Vol. 330, No. 8, 2015, pp. 358-363.
[25] Huang, S. T.; Du, Y. Z. Synthesis and anti-hepatitis B virus activity of celecoxib conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr. Polym. Vol. 83, No. 18, 2001, pp. 1715-1722.
[26] Dandagi, P.; Patel, P.; Mastiholimath, V.; Gadad, A. Development and characterization of a particulate drug delivery systemfor etoposide. Ind. J. Novel Drug Deliv. Vol. 3, No. 1, 2001, pp. 43-51.
[27] Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. Vol. 270, No. 1-2, 2004, pp. 1-6.
[28] Masteri-Farahani, M.; Tayyebi, N. A new magnetically recoverable nanocatalyst for epoxidation of olefins. J. Mol. Catal. A: Chem. Vol. 348, No. 1, 2011, pp. 83-88.
[29] Banerjee, S. S.; Chen, D. H. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater. Vol. 19, No. 25, 2007, pp. 6345-6349.
[30] Allemann, E.; Gurny, R.; Deolker, E. Drug loaded nanoparticles: preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm. Vol. 39, No. 5, 1993, pp. 173-191.
[31] Banerjee, T.; Mitra, S.; Singh, A. K.; Sharma, R. K.; Maitra, A. Preparation and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. Vol. 243, No. 1-2, 2002, pp. 93-105.
[32] Moazzen, E.; Ebrahimzadeh, H.; Amini, M.; Sadeghi, O. J. A novel biocompatible drug carrier for oral delivery and controlled release of antibiotic drug: Loading and release of clarithromycin as an antibiotic drug model. Sol Gel Sci. Technol. Vol. 66, No. 5, 2013, pp. 345-352.
[33] Rodríguez-Lugo V., Salinas-Rodríguez E., Vázquez R. A., Alemán K., Rivera A. L., Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method. RSC Adv. Vol. 7, No. 13, 2017, pp. 7631-7639.
[34] Shahmohammadi M., Jahandideh R., Behnamghader A., Rangie M., Sol-gel synthesis of FHA/CDHA nanoparticles with a nonstochiometric ratio. Int. J. Nano Dimens. Vol. 1, No. 1, 2010, pp. 41-45.
[35] Wang J. P., Chen Y. Z., Yuan S. J., Sheng G. P., Yu H. Q., Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Vol. 43, No. 20, (2009), pp. 5267-5275.
[36] De Bruyn J. R., Goiko M., Mozaffari M., Bator D., Dauphinee R. L., Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapitate crystals by osteopontin. Plus One. Vol. 8, No. 55, (2013), pp. 56764-56768.
[37] Lyklema J., Fundamentals of interface and colloid science. Vol. 2, (1995), pp. 3-208. ISBN 0-12-460529-X.
[38] Russel W. B., Saville D. A., Schowalter W. R., Colloidal dispersions, cambridge university press. (1992), ISBN 0-521-42600-6.
[39] Dukhin A. S., Goetz P. J., Ultrasound for characterizing colloids. Elsevier. (2002), ISBN 0-444-51164-4.
[40] Hunter R. J., Foundations of colloid science, Oxford University Press. (1989), ISBN 0-19-855189-4.
[41] Smoluchowski M., Contribution to the theory of electro-osmosis and related phenomena. Bull. Int. Acad. Sci. Cracovie. Vol. 3, No. 3, (1903), pp. 184-199.
[42] Morrison I. D., Ross S., Colloidal dispersions: Suspensions, emulsions, and Foams. (2002), ISBN 978-0-471-82848-8.
[43] Wang L., Li S., Phosphorylated osteopontin peptides inhibit crystallization by resisting the aggregation of calcium phosphate nanoparticles. Cryst. Eng. Comm. Vol. 14, No. 22, (2012), pp. 8037-8043.
[44] Sadjadi M. S., Meskinfam, M., Sadeghi B., Jazdarreh H., Zare K., In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mat. Chem. Phys. Vol. 124, No. 1, (2010), pp. 217-222.
[45] Sadjadi M. S., Meskinfam, M., Sadeghi B., Jazdarreh H., Zare K., In situ biomimetic synthesis and characterization of nano hydroxyapatite in gelatin matrix. J. Biomedical Nanotech. Vol. 7, No. 3, (2011), pp. 450-454.
[46] Sadeghi B., Ghammamy Sh., Gholipour Z., Amini Nia A., Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell. Mic. & Nano Lett. IET. Vol. 6, No. 4, (2011), pp. 209-213.
[47] Wu Y., Xing v, Zhou T., Zhao C., Examining the use of Fe3O4 nanoparticles to enhance the NH3 sensitivity of polypyrrole films. Poly. Bull. Vol. 59, No. 3, 2011, pp. 227-234.
[48] Zhang, J.; Yang, J.; Wang, J.; Ding, H.; Liu, Q.; Schubert, U.; Rui, Y.; Xu, J. Top of Form Bottom of Form Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: Influences of different cerium precursors. J. Mol. Catal. Vol. 443, No. 2, 2017, pp. 131-138.
[49] De Almeida, L.; Grandjean, S.; Vigier, N.; Patisson, F. Insights into the thermal decomposition of Lanthanide(III) and Actinide(III) Oxalates – from neodymium and cerium to plutonium. Eur. J. Inorg. Chem. Vol. 31, No. 62, 2012, pp. 4986-4999.