Fixed point theorems in generalized $C^{\ast}-$valued metric spaces
Subject Areas : Fixed point theory
1 - Laboratory Analysis, Geometry and Applications, University of Ibn Tofail, Kenitra, Morocco
2 - Laboratory Analysis, Geometry and Applications, Higher School of Education and Training, University of Ibn Tofail, Kenitra, Morocco
Keywords: Fixed point, $C^{\ast}-$valued metric space, $C^{\ast}-$valued $b-$metric space,
Abstract :
Based on the notion and properties of $C^{\ast}-$algebras, this paper aims to collect important results of fixed point theorems in generalized $C^{\ast}-$valued metric spaces. We also prove some new notions and establish an existence result for an integral equation in $C^{\ast}-$valued $b-$metric spaces. Moreover, we give some fixed point theorems in different types of spaces such as $C^{\ast}-$valued (extended $b-$metric, $b-$rectangular metric, extended hexagonal $b-$asymmetric, $S-$metric, $G-$metric and partial metric) spaces.
[1] E. Amer, M. Arshad, W. Shatanawi, Common fixed point results for generalized α∗− ψ−contraction multivalued mappings in b- metric spaces, J. Fixed point Theory Appl. 19 (4) (2017), 3069-3086.
[2] M. Asim, M. Imdad, C∗−algebra-valued extended b- Metric spaces and fixed point results with an application, U. P. B. Sci. Bull, Series A. 82 (1) (2020), 207-218.
[3] S. Batul. Fixed Point Theorems in Operator-Valued Metric Spaces, A thesis for degree of Doctor of Philosophy Capital University of science and Technology, Islmabad, 2016.
[4] A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type, Int. J. Math. Sci. 29 (2002), 531-536.
[5] S. Chandok, D. Kumar, C. Park, C∗−algebra-valued partial metric space and fixed point theorems, Proc. Math. Sci. 129 (2019), 129:37.
[6] S. K. Chatterjea, Fixed point theorems, Acad. Bulgare. Sci. 25 (1972), 727-730.
[7] S. Czerwik, Contraction mapping in b−metric spaces, Acta. Math. Inf. Uni. Ost. 1 (1) (1993), 5-11.
[8] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. (2014), 2014:38.
[9] C. Kalaivani, G. Kalpana, Fixed point theorems in C∗-algebra-valued S-metric spaces with some applications, U.P.B. Sci. Bull. Ser. A. 80 (3) (2018), 93-102.
[10] Z. Kadelburg, S. Radenovi´ c, On generalized metric spaces: a survey, TWMS. J. Pure. Appl. Math. 5 (2014), 3-13.
[11] G. Kalpana. Z. Sumaiya Tasneem, C∗−Algebra valued rectangular b-metric spaces and some fixed point theorems, Commun. Fac. Sci. Univ. Ank. Ser. A1. 68 (2) (2019), 2198-2208.
[12] G. Kalpana, Z. Soumaiya Tasneem, T. Abdeljawad. New fixed point theorems in operator valued extended hexagonal b-metric spaces, Palestine J. Math. 11 (3) (2022), 48-56.
[13] Z. Ma. L. Jiang, H. Sun, C∗−algebra valued metric spaces and related fixed point theorems, Fixed point Theory Appl. (2014), 2014:206.
[14] S. B. Nadler Jr, multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[15] H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric space in complete metric spaces, Fixed Point Theory Appl. (2014), 2014:210.
[16] B. Samet, Discussion on ”A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari, Publ. Math. Debrecen. 76 (2010), 493-494.
[17] C. Shen, L. Jiang, Z. Ma. C∗-algebra-valued G−metric spaces and related fixed-point theorems, J. Func. Spa. (2018), 2018:3257189.
[18] A. Tomar, M. Josh, A. Deep, Fixed point and its applications in C∗−algebra valued partial metric space, TWMS. J. App. Eng. Math. 11 (2) (2021), 329-340.
[19] W. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684.
[20] K. Zhu, An Introduction to operator Algebras, CRC Press, Boca Raton, USA, 1961.