Synchronization of fractional-order LU system with new parameters using the feedback control technique
Subject Areas : Dynamical systems and ergodic theory
1 - Department of Mathematics, Payame Noor University, Iran
2 - Department of Mathematics, Payame Noor University, Iran
Keywords: Synchronization, fractional order LU system, feedback control, Lyapunov stability,
Abstract :
In this paper, a feedback control method is employed for synchronization between two identical chaotic fractional order LU system (FOLUS) with the new parameters. We have shown that the convergence rate of synchronization error. Therefore, use encryption and its analysis for the chaotic FOLUS. In addition, we show that the method used here is better than other existing algorithm.
[1] W. M. Ahmad, Hyperchaos in fractional order nonlinear systems, Chaos. Solitons & Fractals. 27 (2005), 1459-1465.
[2] B. Bandyopadhyay, S. Kamal, Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, Springer, 2015.
[3] N. A. Camacho, D. Mermoud, J. A. Gallegos, Lyapunov functions for fractional order system, Common. Nonlinear. Sci. Numer. Simulate. 19 (2014), 2951-2957.
[4] L. P. Chen, Y. Chai, R. W. Wu, J. Sun, T. D. Ma, Cluster synchronization in fractional-order complex dynamical networks, Phys. Lett. A. 376 (2012), 2381-2388.
[5] J. Chen, H. Liu, J. Lu, Q. Zhang, Projective and lag synchronization of a novel hyperchaotic system via impulsive control, Commun. Nonlinear. Sci. Numer. Simulat. 16 (2011), 2033-2040.
[6] W. H. Deng, C. P. Li, Chaos synchronization of the fractional Lu system, Physica A. 353 (2005), 61-72.
[7] Y. Gao, CH. Liang, Q. Wu, H. Yuan, A new fractional-order hyperchaotic system and its modified projective synchronization. Chaos. Solitons & Fractals. 76 (2015), 190-204.
[8] Z. M. Ge, C. Y. Qu, Chaos in a fractional order modified Duffing system, Chaos. Solitons & Fractals. 34 (2007), 262-291.
[9] D. Ghosh, S. Bhattacharya, Projective synchronization of new hyperchaotic system with fully unknown parameters, Nonlinear Dyn. 61 (2010), 11-21.
[10] T. T. Hartley, C. F. Lorenzo, Dynamics and control of initialzed fractional-order systems, Nonlinear Dyn. 29 (2002), 201-233.
[11] O. Heaviside, Electromagnetic Theory, Chelsea, New York, 1971.
[12] A. S. Hegazi, E. Ahmed, A. E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun. Nonlinear. Sci. Numer. Simulat. 18 (2013), 1193-1202.
[13] R. Hifer, Applications of Fractional Calculus in Physics, Word scientific, Hackensack, 2001.
[14] X. Huang, Z. Zhao, Z. Wang, Y. X. Li, Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing. 94 (2012), 13-21.
[15] M. Ichise, Y. Nagayangi, T. Kojima, An analog simulation of noninteger order transfer functions for analysis of electrode process, J. Electroanal. Chem. 33 (1971), 253-265.
[16] R. C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), 299-307.
[17] D. Kunsezov, A. Bulages, G. D. Dang, Quantum Lery processes and fractional kinetics, Phys. Rev. Lett. 82 (1999), 1136-1139.
[18] N. Laskin, Fractional marcet dynamics, Phys. A. 287 (2000), 482-492.
[19] C. Li, Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance, Commun. Nonlinear. Sci. Numer. Simulat. 17 (2012), 405-413.
[20] C. Li, W. Deng, Remarks on fractional derivatives, Appl. Math. Comput. 187 (2007), 777-784.
[21] H-L. Li, Y-L. Jiang, Z-L. Wang, Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control, Nonlinear Dyn. 79 (2015), 919-925.
[22] H. Q. Li, X. F. Liao, M. W. Lou, A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation, Nonlinear Dyn. 68 (2012), 137-149.
[23] L. Liu, D. Liang, Ch. Liu, Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system, Nonlinear Dyn. 69 (2012), 1929-1939.
[24] J. G. Lu, Chaotic dynamics of the fractional-order Lü system and its synchronization, Physics Lett. A. 354 (2006), 305-311.
[25] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Engin. Systems. Appl. 2 (1996), 963-968.
[26] I. Petras, Fractional-Order Nonlinear Systems Modeling, Analysis and Aimulation, Springer, Heidelberg, 2011.
[27] I. Podlubny, Fractionaln Differential Equations, Academic press, New York, 1999.
[28] M. Rafikov, J. M. Balthazar, On control and synchroni zation in chaotic and hyperchao tic systems via linear feedback control, Commun. Nonlinear. Sci. Numer. Simulat. 13 (2008), 1246-1255.
[29] D. Sadaoui, A. Boukabou, S. Hadef, Predictive feedback control and synchronization of hyperchaotic systems, Appl. Math. Comput. 247 (2014), 235-243.
[30] S. Singh, Single input sliding mode control for hyperchaotic Lu system with parameter uncertainty, Int. J. Dynam. Control. 4 (2016), 504-514.
[31] K. S. Sudheer, M. Sabir, Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters, Physics Lett. A. 373 (2009), 3743-3748.
[32] H. H. Sun, A. Abdelwahed, B. Onaral, Linear approximation for transfer function with a pole of fractional-order, Trans. Autom. Control. 29 (1984), 441-444.
[33] Z-L. Wang, Projective synchronization of hyperchaotic Lü system and Liu system, Nonlinear Dyn. 59 (2010), 455-462.
[34] H. Wang, Z. Z. Han, Z. Mo, Synchronization of hyperchaotic systems via linear control, Commun. Nonlinear. Sci. Numer. Simulat. 15 (2010), 1910-1920.
[35] H. Wang, H. Zhengzhi, Chaotic synchronization and secure communication based on descriptor observer, Nonlinear Dyn. 57 (2009), 69-73.
[36] Ch. Yang, Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller, Nonlinear Dyn. 63 (2011), 447-454.
[37] C. Yin, S. Dadras, S. M. Zhang, Y. Q. Chen, Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Appl. Math. Model. 37 (2013), 2469-2483.
[38] Y. Yu, H-X. Li, Adaptive generalized function projective synchronization of uncertain chaotic systems, Nonlinear Anal. 11 (2010), 2456-2464.
[39] W-X. Yuan, F. Bing, Generalized projective synchronization of a class of hyperchaotic systems based on state observer, Commun. Nonlinear. Sci. Numer. Simulat. 17 (2012), 953-963.
[40] Q. Zhang, J. Xiao, X-Q. Zhang, D-Y. Cao, Dual projective synchronization between integer-order and fractional-order chaotic systems, Optik. 141 (2017), 90-98.
[41] R. Z. Zhang, S. P. Yang, Stabilization of fractional-order chaotic system via a single state adaptive feedback controller, Nonlinear Dyn. 68 (2012), 45-51.
[42] X. Zhou, Y. Wu, Y. Li, H. Xue, Adaptive control and synchronization of a new modified hyperchaotic Lu system with uncertain parameters, Chaos. Solitons & Fractals. 39 (2009), 2477-2483.