A note on quasi irresolute topological groups
Subject Areas : History and biography
1 - Department of Mathematics, Faculty of Science Mugla Sitk Kocman University, Mugla 48000, Turkey
2 - Department of Mathematics, Graduate School of Natural and Applied Sciences Mugla Sitki Kocman University, Mugla 48000, Turkey
Keywords: Semi-open set, semi-closed set, irresolute mapping, semi-homeomorphism, quasi irresolute topological group,
Abstract :
In this study, we investigate the further properties of quasi irresolute topological groupsdefined in [20]. We show that if a group homomorphism f between quasi irresolute topologicalgroups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connectedquasi irresolute topological group $(G,*,\tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then $G$ is generated by $V$. Moreover it is proven that a subgroup $H$ of a quasi irresolutetopological group $(G,*,\tau)$ is semi-discrete if and only if it has a semi-isolated point.
[1] A.V. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, Vol. 1, Atlantis Press/World Scientific, Amsterdam– Paris, 2008.
[2] N. Biswas, On characterizations of semi-continuous functions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 48 (1970), 399-402.
[3] E. Bohn, J. Lee, Semi-topological groups, Amer. Math. Monthly, 72 (1965), 996-998.
[4] M. S. Bosan et al., On quasi irresolute and semi-irr-topological groups, Afindad, 80 (574) (2014), 1241-1252.
[5] M. S. Bosan, s-topological Groups and Related Structures, Ph.D Thesis, 2015.
[6] M. S. Bosan, M. D. Khan, L.D.R. Kocinac, On s-topological groups, Math. Morav., 18 (2) (2014), 35-44.
[7] N. Bourbaki. General Toplogy Chapters1-4. Springer-Verlag Berlin, 1989.
[8] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.
[9] S. G. Crossley, S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci., 22 (1971), 123-126.
[10] S. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233–254.
[11] P. Das, Note on semi connectedness, Indian J. Mech. Math., 12(1) (1974), 31-34.
[12] M. D. Khan, M. S. Bosan, A note on s-topological groups, Life Sci J., 11(7s) (2014), 370-374.
[13] M. D. Khan, A. Siab, L. D. R. Kocinac, Irresolute topological groups, Math. Morav., 19 (1) (2015), 73-80.
[14] M. D. Khan, S. Habib, M. S. Bosan, Quasi S-Topoloical groups, Life Sci J., 27 (1) (2015), 53-57.
[15] R. M. Latif, On characterizations of mappings, Soochow Journal of Mathematics, 19 (4) (1993), 475-495.
[16] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
[17] R. Noreen, M. D. Khan, Semi Connectedness in s-topological groups, J. of Adv. Stud. in Topology, 7(2) (2016), 54-59.
[18] R. Noreen, M. S. Bosan, M. D. Khan, Semi Connectedness in irresolute topological groups, Life Sci J., 27(6) (2015), 4981-4985.
[19] T. M. Nour, A note on some applications of semi-open sets, Internat. J. Math. Sci., 21 (1998), 205-207.
[20] T. Oner, M. B. Kandemir, B. Tanay, Semi-Topological Groups with Respect to Semi continuity and irresoluteness, J. of Adv. Stud. in Topology, 4(3) (2013), 23-28.
[21] T. Oner, A. Ozek, On Semi Topological Groups With Respect To Irresoluteness, Int J Recent Sci Res, 6 (12) (2015), 7914-7916.