شبیهسازی و تحلیل پارامترهای موثر بر پاسخ طیفی فاکتورتقویت میدان الکتریکی در یک سیستمAFM-TERS پیشنهادی
محورهای موضوعی : انرژی های تجدیدپذیرمحسن کاتبی جهرمی 1 , رحیم غیور 2 * , زهرا عادل پور 3
1 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: میکروسکوپ نیروی اتمی, تشدید پلاسمونهای سطحی محلی, نوک تیپ, طیفسنجی رامان تقویتشده سوزنی,
چکیده مقاله :
یکی از پیشرفت های مهم سال های اخیر در دستگاه رامان، تلفیق آن با میکروسکوپ پروب روبشی (SPM) به خصوص میکروسکوپ نیروی اتمی (AFM) بوده است. میکروسکوپ نیروی اتمی در حال حاضر به عنوان یکی از بـهترین روش های تصویر برداری برای مطالعه توزیع ناهمگون سطح در ابعاد نانو شناخته می شود. در سال های اخیر دانشمندان بر روی به دست آوردن فاکتور تقویت میدان الکتریکی بیشتر متمرکز شده اند تا آنجا که آشکارسازی و نقشه برداری از یک مولکول تنها با این روش امکان پذیر شده است. در نتیجه رزولوشن فضایی جهـت تشخیص در مقیاس زیر مولکول در حال بهـبود است. در این مقاله با استفاده از روش محاسباتی تفاضلی محدود در حوزه زمان (FDTD) اثر تغییر پارامترهای پروب مثل زاویه مخروط، شعاع تیپ و جنس آن بر میزان شدت میدان الکتریکی نزدیک به نوک پروب مورد بررسی قرار گرفته است. در نهایت پس از یافتن بهترین ساختار تیپ و نوع پلاریزاسیون نور تابشی، اثر استفاده از زیر لایه در سیستم طیف سنجی رامان تقویت شده سوزنی (TERS) پیشنهادی بررسی شده است. نتایج شبیه سازی ها نشان می دهد که با توجه به ابعاد تیپ انتخاب شده از بین زاویه های مخروط بررسی شده زاویه مخروط 30 درجه بیشترین میزان تقویت میدان الکتریکی در نوک تیپ را ایجاد می کند. همچنین به کار بردن منبع نور تابشی با پلاریزاسیون دایره ای و استفاده از زیرلایه از عوامل بسیار موثر جهت بهبود فاکتور تقویت میدان الکتریکی هستند. در انتها برای ساختار طراحی شده ماکزیمم مقدار فاکـتور تقویت میدان الـکـتریکی 104×2/3 به دست آمده است، که این مقدار در مقایسه با نتایج گزارش شده در مطالعات قبلی بهبود قابل توجه داشته است.
One of the most important advances in Raman spectroscopy in recent years has been its integration with scanning probe microscopes (SPM), especially atomic force microscopes (AFM). Currently, AFM is recognized as one of the best imaging methods for studying the distribution of heterogeneous surface in nanoscale dimensions. Scientists are now focused on obtaining more enhancement factor of electric field, to the extent that detection and mapping of only one molecule has become possible with this method. Therefore, spatial resolution is being improved in detecting sub-molecule levels. In this paper, using the finite difference time domain (FDTD) calculation method, the effect of changing the parameters of the probe such as cone angle, tip radius and its material on the electric field intensity near the apex of the probe is investigated. In addition, the effect of polarization of light on the increase of electric field has been analyzed. The simulation results obtained for different cone angles show that the cone angle of 30 degree creates the highest amount of electric field enhancement factor at the tip apex. Furthermore, the use of laser source with radially polarized light and the use of substrate are very effective factors on improving the electric field enhancement factor. Finally, the maximum value of electric field enhancement factor of the proposed configuration is 3.2×104, where this value has been improved significantly comparing to the results reported in the previous papers published in this field.
[1] M. Schmitt, J. Popp, “Raman spectroscopy at the beginning of the twenty- first century”, Journal of Raman Spectroscopy, vol. 37, no. 1-3, pp. 20-28, Jan. 2006 (doi: 10.1002/jrs.1486).
[2] C. Gao, W. Lin, J. Wang, R. Wang, J. Wang, “Principle and application of tip-enhanced raman scattering”, Plasmonics, vol. 13, pp. 1343-1358, 2018 (doi: 10.1007/s11468-017-0638-6).
[3] F. Shao, R. Zenobi, “Tip-enhanced raman spectroscopy: Principles, practice, and applications to nanospectroscopic imaging of 2D materials”, Analytical and Bioanalytical Chemistry, vol. 411, pp. 37–61, 2019 (doi: 10.1007/s00216-018-1392-0).
[4] Z. Shen, X. Zi, M. Du, L. Zhang, Y. Shen, M. Hu, “Virtual probe stimulated tip-enhanced raman spectroscopy: The extreme field enhancement in virtual-real probe dimer”, Journal of Applied Physics, vol. 129, Article Number: 133104, April 2021 (doi: 10.1063/5.0046647).
[5] N. Mauser, A. Hartschuh, “Tip-enhanced near-field optical microscopy”, Chemical Society Reviews, vol. 43, pp. 1248-1262, Feb. 2014 (doi: 10.1039/C3CS60258C).
[6] R. Petry, N.C. Oliveira, A.C. Alves, A.G.S. Filho, D.S.T. Martinez, G. Hwang, F.A. Sousa, A.J. Paula, “Chapter 2- Nanomaterials properties of environmental interest and how to assess them”, Advanced Nanomaterials, pp. 45-105, 2019 (doi: 10.1016/B978-0-12-814829-7.00002-1).
[7] N. Kumar, S. Mignuzzi, W. Su, D. Roy, “Tip enhanced Raman spectroscopy: principles and applications”, EPJ Techniques and Instrumentation, vol. 2, Article Number: 9, July 2015 (doi: 10.1140/epjti/s40485-015-0019-5).
[8] N. Kazemi-Zanjani, S. Vedraine, F. Lagugné-Labarthet, “Localized enhancement of electric field in tip enhanced raman spectroscopy using radially and linearly polarized light”, Optics Express, vol. 21, no. 21, pp. 25271–25276, Oct. 2013 (doi: 10.1364/OE.21.025271).
[9] S. Najjar, D. Talaga, L. Schue, Y. Coffinier, S. Szunerits, R. Boukherroub, L. Servant, V. Rodriguez, S. Bonhommeau, “Tip-enhanced raman spectroscopy of combed double-stranded DNA bundles”, The Journal of Physical Chemistry C, vol. 118, no. 2, pp. 1174–1181, 2014 (doi: 10.1021/jp410963z).
[10] X. Wang, D. Zhang, K. Braun, H. J. Egelhaaf, C.J. Brabec, A.J. Meixner, “High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications”, Advanced Functional Materials, vol. 20, no. 3, pp. 492–499, Feb. 2010 (doi: 10.1002/adfm.200901930).
[11] N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J.F. Maguire, M. Green, M.D. Foster, A.P. Sokolov, “High contrast scanning nano-Raman spectroscopy of silicon”, Journal of Raman Spectroscopy, vol. 38, no. 6, pp. 789–796, June 2007 (doi: 10.1002/jrs.1698).
[12] Y. Okuno, Y. Saito, S. Kawata, P. Verma, “Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube”, Physical Review Letters, vol. 111, no. 21, Article Number: 216101, Nov. 2013 (doi: 10.1103/PhysRevLett.111.216101).
[13] W. Su, D. Roy, “Visualizing graphene edges using tip-enhanced Raman spectroscopy”, Journal of Vacuum Science and Technology B, vol. 31, Article Number: 041808, July 2013 (doi: 10.1116/1.4813848).
[14] R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang,Y. Liao, J. Aizpurua,Y. Luo, J.L. Yang, J.G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering”, Nature, vol. 498, pp. 82–86, June 2013 (doi: 10.1038/nature12151).
[15] B. Huang, M. Bates, X.W. Zhuang, “Super-resolution fluorescence microscopy”, Annual Review of Biochemistry, vol. 78, pp. 993–1016, 2009 (doi: 10.1146/annurev.biochem.77.061906.092014).
[16] N. Kumar, B.M. Weckhuysen, A.J. Wain, A.J. Pollard, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy”, Nature Protocols, vol. 14, pp. 1169–1193, 2019 (doi: 0.1038/s41596-019-0132-z).
[17] D. Kim, C. Lee, B.G. Jeong, S.H. Kim, M.S. Jeong, “Fabrication of highly uniform nanoprobe via the automated process for tip-enhanced Raman spectroscopy”, Nanophotonics, vol. 9, no. 9 , pp. 2989-2996, 2020 (doi: 10.1515/nanoph-2020-0210).
[18] F. Lu, W. Zhang, J. Zhang, M. Liu, L. Zhang, T. Xue, C. Meng, F. Gao, T. Mei, J. Zhao, “Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam”, Nanophotonics, vol. 8, no. 12, pp. 2303–2311, 2019 (doi: 10.1515/nanoph-2019-0329).
[19] Z. Yang, J. Aizpurua, X. Hongxing, “Electromagnetic field enhancement in TERS configurations”, Journal of Raman Spectroscopy, vol. 40, pp. 1343–1348, 2009 (doi: 10.1002/jrs.2429).
[20] L.Y. Meng, T.X. Huang, X. Wang, S. Chen, Z.L. Yang, B. Ren, “Gold-coated AFM tips for tip enhanced Raman spectroscopy: Theoretical calculation and experimental demonstration”, Optics Express, vol. 23, no. 11, pp. 13804–13813, 2015 (doi: 10.1364/OE.23.013804).
[21] S. Bruzzone, M. Malvaldi, G.P. Arrighini, C. Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles”, The Journal of Physical Chemistry B, vol. 109, 9, pp. 3807-3812, 2005 (doi: 10.1021/jp045451a).
[22] K.S. Kunz, R.J. Luebbers, “The finite difference time domain method for method for electromagnetics”, CRC Press, 1993 (ISBN: 9780367402372).
[23] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. on antennas and propagation, vol. 14, no. 3, pp. 302-307, May 1966 (doi: 10.1109/TAP.1966. 1138693).
[24] D.M. Sullivan, “Electromagnetic simulation using the FDTD method”, 2th Edition, John Wiley and Son, 2013 (doi: 10.1002/9781118646700).
[25] F. Monsefi, M. Otterskog, S. Silvestrov, “Direct and inverse computational methods for electromagnetic scattering in biological diagnostics”, arXiv Preprint arXiv, vol. 1312, Article Number: 4379, 2013.
[26] P.B. Johnson, R.W. Christy, “Optical constants of the noble metals”, Physical Review B, vol. 6, pp. 4370-4379, 1972 (doi: 10.1103/PhysRevB.6.4370).
[27] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications”, Advances in Optics and Photonics, vol. 1, no. 1, 2009 (doi: 10.1364/AOP.1.000001).
[28] B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system”, Proceedings of the Royal Society A : Mathematical Physical, vol. 253, pp. 358–379, 1959 (doi: 10.1098/rspa.1959.0200).
[29] K. Youngworth, T. Brown, “Focusing of high numerical aperture cylindrical-vector beams”, Optics express, vol. 7, pp. 77–87, 2000 (doi: 10.1364/oe.7.000077).
[30] M. M. Sartin, H. Su, X. Wang, B. Rena, “Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems”, The Journal of Chemical Physics, vol. 153, Article Number: 170901, 2020 (doi: 10.1063/5.0027917).
_||_