طراحی و بهینه سازی ساختار مدولاتور پلاسمونیکی مبتنی بر ماده فعال ITO وگرافن
محورهای موضوعی : انرژی های تجدیدپذیرعباس اسلامی 1 , مجتبی صادقی 2 * , زهرا عادل پور 3
1 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: گرافن, سه بعدی, مدولاتور پلاسمونیکی, اکسید قلع آلاییده با ایندیم, مصرف انرژی کم, نسبت تمایز بالا,
چکیده مقاله :
در یک دهه اخیر مدارهای مجتمع نوری مانند مدولاتورها، پیشرفت چشم گیری در زمینههای مختلف مانند مخابرات نوری، تصویربرداری و سنسور داشتهاند. از میان مواد فعال مورد استفاده در مدولاتورها، گرافن و اکسید قلع آلاییده با ایندیم (ITO) بهسبب ویژگی اپسیلون نزدیک به صفر (ENZ)، سرعت و پاسخدهی قابل توجه که دارند، یکی از گزینههای مناسب در بین مواد فعال برای عمل مدولاسیون است. در این مقاله، با اعمال تزویج مستقیم نور به طراحی ساختار مدولاتور پلاسمونیکی در حالت سه بعدی پرداخته شده است. با تغییرات ضخامت لایههای ITO، اکسید هافنیوم (HfO2) و عرض موج بر ساختار بهینه شده که ضخامتهای بهینه 3 نانومتر برای لایه ITO، 5 نانومتر برای HfO2 و 280 نانومتر برای عرض موج بر به دست آمده است. نتایج شبیهسازیهای سه بعدی این مقاله همراه با تزویج مناسب نشان داده شده که تلفات الحاقی در حالت سه بعدی نسبت به دو بعدی تغییر پیدا نکرده و پارامتر نسبت خاموشی مدولاتور اندکی کاهش یافته است. از سویی تزویج مناسب و بهینه، تاثیری در انرژی مصرفی نداشته است. نتایج شبیهسازیهای سه بعدی نشان دهنده این است که مدولاتور پلاسمونیکی میتواند برای طول 1 میکرومتر مدولاتور، در ولتاژ 5/0 ولت و طول موج 55/1 میکرومتر به نسبت تمایز 9/13 دسیبل، تلفات الحاقی 9/2 دسیبل، سرعت مدولاسیون 9/140 گیگاهرتز و مصرف انرژی بسیار کم 5/1 فمتو ژول بر بیت دست پیدا کند و نشان دهنده کاهش قابل توجه در مصرف انرژی و بهبود نسبت تمایز نسبت به مدولاتورهای مشابه پیشین است. همچنین در طول 2 میکرومتر مدولاتور، نسبت تمایز 76/27 دسیبل، تلفات الحاقی 68/5 دسیبل، سرعت مدولاسیون 14/70 گیگاهرتز و مصرف انرژی برابر با 88/2 فمتو ژول بر بیت به دست آمده است.
In the last decade, optical integrated circuits, including modulators, have made significant progress in optical communications, imaging, and sensors. Among the active materials used in modulators, graphene and indium tin oxide (ITO) are some of the suitable options among the active materials for modulation action due to their epsilon-near-zero (ENZ) characteristics, speed, and considerable response. In this paper, by applying direct coupling of light, the structure of plasmonic modulator in three-dimensional mode has been designed. And by changing the thickness of ITO, HfO2 (hafnium oxide) layers and waveguide width, the structure is optimized. Optimization thickness of 3 nm for ITO, 5nm for HfO2 and 280nm for waveguide width is achieved. The results of three-dimensional simulations of this paper with appropriate coupling show that the insertion loss (IL) of three-dimensional mode have not changed and the extinction ratio (ER) of the modulator has been slightly reduced in comparison with two-dimensional mode .On the other hand, appropriate and optimal coupling has no effect on energy consumption.Three-dimensional results show that the proposed plasmonic modulator can achieve an extinction ratio of 13.9 dB, an insertion loss of 2.9 dB, modulation speed of 140.9 GHz and a very low power consumption of 1.51 fj/bit for a 1µm length of the modulator, at 0.5 V voltage and a wavelength of 1.55 µm. Our design demonstrates a considerable reduction in energy consumption and improvement in extinction ratio compared to previous works. Also, for a 2 µm length of the modulator, an extinction ratio of 27.76 dB, an insertion loss of 5.68 dB, modulation speed of 70.14 GHz and power consumption of 2.88 fj/bit is achieved.
[1] R. Won, M. Paniccia, “Simply silicon”, Nature Photonics, vol. 4, no. 8, pp. 491-491, Aug. 2010 (doi: 10.1038/nphoton.2010.190).
[2] K. Liu, C.R. Ye, S. Khan, V.J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators”, Laser and Photonics Reviews, vol. 9, no. 2, pp. 172-194, Mar. 2015 (doi: 10.1002/lpor.201400219).
[3] D.K. Gramotnev, S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit”, Nature Photonics, vol. 4, no. 2, pp. 83-91, Feb. 2010 (doi:10.1038/nphoton.2009.282) .
[4] P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials”, Laser and Photonics Reviews, vol. 4, no. 6, pp. 795-808, Nov. 2010 (doi:10.1002/lpor.200900055).
[5] G.T. Reed, G. Mashanovich, F.Y. Gardes, D.J. Thomson, “Silicon optical modulators”, Nature Photonics, vol. 4, no. 8, pp. 518-526, Aug. 2010 (doi:10.1038/nphoton.2010.179).
[6] Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation”, Nanophotonics, vol. 4, no. 2, pp. 198-213, 2015 (doi:10.1515/nanoph-2015-0006).
[7] L. Jin, Q. Chen, W. Liu, S. Song, “Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO”, Plasmonics, vol. 11, no. 4, pp. 1087-1092, Aug. 2016 (doi:10.1007/s11468-015-0146-5).
[8] M.K. Shah, R. Lu, Y. Liu, “Enhanced performance of ITO-assisted electro-absorption optical modulator using sidewall angled silicon waveguide”, IEEE Trans. on Nanotechnology, vol. 17, no. 3, pp. 412-418, May 2018 (doi:10.1109/TNANO.2018.2804485).
[9] L. Ji, D. Zhang, Y. Xu, Y. Gao, C. Wu, X. Wang, Z. Li, X. Sun, “Design of an electro-absorption modulator based on graphene-on-silicon slot waveguide”, IEEE Photonics Journal, vol. 11, no. 3, pp. 1-11, June 2019 (doi:10.1109/JPHOT.2019.2918314).
[10] P. Zheng, H. Yang, M. Fan, G. Hu, R. Zhang, B. Yun, Y. Cui, “A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide”, Plasmonics, vol. 13, no. 6, pp. 2029-2035, Mar. 2018 (doi: 10.1007/s11468-018-0719-1).
[11] A. Eslami, M. Sadeghi, Z. Adelpour, “Plasmonic modulator utilizing graphene-HfO2-ITO stack embedded in the silicon waveguide”, Optik, vol. 227, Article Number: 165608, 2021 (doi:10.1016/j.ijleo.2020.165608).
[12] X. Qiu, X. Ruan, Y. Li, and F. Zhang, “Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator”, Optics Express, vol 26, no. 11, pp. 13902-13914, May 2018 (doi: 10.1364/OE.26.013902).
[13] A. Melikyan, N. Lindenmann, S. Walheim, P.M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, J. Leuthold, “Surface plasmon polariton absorption modulator”, Optics Express, vol. 19, no. 9, pp. 8855-8869, April 2011 (doi: 10.1364/OE.19.008855).
[14] M.Y. Abdelatty, M.M. Badr, M.A. Swillam, “Compact silicon electro-optical modulator using hybrid ito tri-coupled waveguides”, Journal of Lightwave Technology, vol. 36, no. 18, pp. 4198-4204, Sept. 2018 (doi: 10.1109/JLT.2018.2863571).
[15] L.A. Falkovsky, “Optical properties of graphene”, Journal of Physics: Conference Series, vol. 129, Article Number: 012004, Dubna, Moscow Region, Russia, Oct. 2008 (doi:10.1088/1742-6596/129/1/012004).
[16] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. R. Shen, “Gate-variable optical transitions in graphene”, Science, vol. 320, no. 5873, pp. 206-209, 2008 (doi:10.1126/science.1152793)
[17] E. D. Palik, “Handbook of optical constants of solids”, 1th Edition, vol. 2: Academic Press, Orlando, March 1991.
[18] P.B. Johnson, R.W. Christy, “Optical constants of the noble metals”, Physical Review B, vol. 6, no. 12, pp. 4370-4379, 1972 (doi:10.1103/PhysRevB.6.4370).
[19] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.B. Kley, A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range”, Advanced Optical Materials, vol. 4, no. 11, pp. 1780-1786, 2016 (doi: 10.1002/adom.201600250).
[20] D. Franta, D. Nečas, I. Ohlídal, “Universal dispersion model for characterization of optical thin films over a wide spectral range: application to hafnia”, Applied Optics, vol. 54, no. 31, pp. 9108-9119, Nov. 2015 (doi: 10.1364/ao.54.009108).
[21] M. Nam, A. Kim, K. Kang, E. Choi, S.H. Kwon, S.J. Lee, S.G. Pyo, "Characterization of atomic layer deposited al2o3/hfo2 and ta2o5/al2o3 combination stacks", Science of Advanced Materials. vol. 8, pp. 1958-1962, Oct. 2016 (doi:10.1166/sam.2016.2854).
[22] V.J. Sorger, N.D. Lanzillotti-Kimura, R.M. Ma, X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response”, Nanophotonics, vol. 1, no. 1, pp. 17-22, 2012 (doi:10.1515/nanoph-2012-0009).
[23] M.Y. Abdelatty, M.M. Badr, M.A. Swillam, “Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides”, Journal of Lightwave Technology, vol. 36, no. 18, pp. 4198-4204, 2018 (doi: 10.1109/JLT.2018.2863571).
[24] J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, Y. Cui, “Design and optimization of a graphene modulator based on hybrid plasmonic waveguide with double low-index slots”, Plasmonics, vol. 14, no. 1, pp. 133-138, Feb. 2019 (doi:10.1007/s11468-018-0785-4).
[25] A. Phatak, Z. Cheng, C. Qin, K. Goda, “Design of electro-optic modulators based on graphene-on-silicon slot waveguides”, Optics Letters, vol. 41, no. 11, pp. 2501-2504, June 2016 (doi: 10.1364/OL.41.002501).
[26] Y. Xu, F. Li, J. Yuan, Z. Kang, C. Mei, X. Zhang, P.K.A. Wai, "Highly-efficient, ultra-broadband and polarization insensitive graphene-silicon based electro-absorption modulator", Proceeding of the IEEE/CLEO, San Jose, California, USA, pp. 1-2, May 2018 (doi:10.1364/CLEO_AT.2018.JW2A.4)
[27] H.R. Das, S.C. Arya, “Performance improvement of VO2 and ITO based plasmonic electro-absorption modulators at 1550 nm application wavelength”, Optics Communications, vol. 479, p. 126455, Jan. 2021 (doi: 10.1016/j.optcom.2020.126455).
_||_