سنتزنمایه انتن های موج نشتی بر پایه موجبر زیر لایه با استفاده از الگوریتم بهینه سازی
محورهای موضوعی : مخابرات میدان و موجفرنوش حیدری 1 , زهرا عادل پور 2 * , ناصر پرهیزگار 3
1 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: نرخ نشت, آنتن موج نشتی, نمایه مجذور کسکانت, سطح گلبرگهای کناری, موجبر مجتمع شده زیرلایه,
چکیده مقاله :
در عصر جدید تکنولوژی، آنتن با نمایه مجذور کسکانت، نقش مهمی در کاربردهای راداری ایفا می کند که می توان به کاربرد آنها برای پوشش یک منطقه هوایی جهت جسـتجوی اهـداف و تخمین ارتفاع آنها اشاره کرد. در این مقاله روشی جهت سنتز نمایه مجذور کسکانت با استفاده از آنتن موج نشتی ارائه شده است. آنتن های موج نشتی گونهای از آنتنها هستند که مکانیسم اصلی آنها تضعیف موج با نشت توان همزمان با انتشار موج در طول ساختار است؛ لذا با کنترل ثابت نشت و ثابت فاز در طول ساختار می توان به سنتز نمایه های تشعشعی موردنظر رسید. در این پژوهش از الگوریتم ژنتیک جهت بهینهسازی ثابت نشت جهت دستیابی به نمایه مجذور کسکانت در محدوده ۱۰ تا ۳۰ درجه استفاده شده است. تطابق در نتایج شبیهسازی و نتایج اندازهگیری شده بیانگر دقت در روند طراحی است. روش پیشنهادی، نمایه موردنظر را با ریپل کمتر از 2 دسیبل در ناحیه تعیین شده و گلبرگ های کناری کمتر از 18- دسیبل به دست می آورد که آنتن را برای کاربردهای راداری مناسب می سازد.
In the modern era, the antennas with cosecant squared pattern play a significant role in radar applications. These applications are used to cover an airspace to search for targets and estimate their height. In this article, a method is proposed for the synthesis of cosecant squared pattern using leaky wave antenna. The principal mechanism in the leaky wave antennae is wave attenuation due to power leakage while the wave propagates through the structure. Thus, by controlling the leakage and phase constants along the length of the structure, one can synthesize the desired radiation patterns. We have used the genetic algorithm to optimize the leakage constant and obtain the desired cosecant squared pattern In the range of 10 to 30 degrees. Conformity in simulation results and measured results indicates accuracy in the design process. The proposed method obtains the desired pattern with a ripple of less than 2 dB in the designated area and side lobe level less than -18 dB, which makes the antenna suitable for radar applications.
[1] I. Aryanian, M.H. Amini, “Synthesis of contoured beam multifeed reflector antenna for optimum coverage”, Microwave and Optical Technology Letters, vol. 63, no. 2, pp. 531-537, Feb. 2021 (doi: 10.1002/mop.32611).
[2] M.H. Amini, I. Aryanian, S. Mirhadi, “Multi-feed reflector antenna design using RADS”, Proceeding of the IEEE/ISTEL, pp. 686-689, Tehran, Iran, Dec. 2018 (doi: 10.1109/ISTEL.2018.8660803).
[3] M. Milijić, A. Nešić, BMilovanović, “Design, realization, and measurements of a corner reflector printed antenna array with cosecant squared-shaped beam pattern”, IEEE Antennas and Wireless Propagation Letters,vol. 14, pp.421-424, June. 2016 (doi: 10.1109/LAWP.2015.2449257).
[4] Z. Hao, M. He, “Developing millimeter-wave planar antenna with a cosecant squared pattern”, IEEE Trans. on Antennas and Propagation, vol. 65, no. 10, pp. 5565-5570, Oct. 2017 (doi: 10.1109/TAP.2017.2735460).
[5] T. Uesaka, H. Arai, “Design of cosecant squared beam collinear array using genetic algorithm”, Proceeding of the IEEE/IWEM, pp.74-75, Hong Kong, China, Aug. 2013 (doi: 10.1109/iWEM.2013.6888774).
[6] S. Rouzbahani, A. Zeidaabadi Nezhad, M. Maddahali, “Design of reflectarray with cosecant squared radiation pattern in X-band”, Proceeding of the IEEE/ICEE, pp. 502-506, Shiraz, Iran, May 2016 (doi: 10.1109/IranianCEE.2016.7585573).
[7] X. Yang, L. Chang, J. Zhang, D. Li, M. Zhang, “A cosecant squared beam antenna array operating at 5.85-7.6GHz”, Proceeding of the IEEE/CSQRWC, Taiyuan, China, pp. 1-3, July 2019 (doi: 10.1109/CSQRWC.2019.8799290).
[8] H. Chu, P. Li, Y. Guo, “A beam-shaping feeding network in series configuration for antenna array with cosecant-square pattern and low sidelobes”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, pp. 742-746, Feb. 2019 (doi: 10.1109/LAWP.2019.2901948).
[9] A.R. Mallahzadeh, S. Mohammad-Ali-Nezhad, “A low cross polarization slotted ridged SIW array antenna design with mutual coupling considerations”, IEEE Trans. on Antennas Propagation, vol.63, pp. 4324-4333, July 2015 (doi: 10.1109/TAP.2015.2457952).
[10]Y. Cheng,W. Hung, K. Wu, Y. Fan, “Millimeter-wave substrate integrated waveguide long slot leaky-wave antennas and two-dimensional multibeam applications”, IEEE Trans. on Antennas Propagation, vol.59, no. 1, pp. 40–47, Jan. 2011 (doi: 10.1109/TAP.2010.2090471).
[11] L. Chang, Z. Zhang, Y. Li, SH. Wang, ZH. Feng, “Air-filled long slot leaky-wave antenna based on folded half-mode waveguide using silicon micromachining technology for millimeter-wave band”, IEEE Trans. on Antennas Propagation, vol. 65, no. 7, pp. 3409-3418, July 2017 (doi: 10.1109/TAP.2017.2700040).
[12] H. Hashiguchi, K. Kondo, T. Baba, H. Arai, “An optical leaky wave antenna by waffled structure”, Journal of Lightwave Technology, vol. 35, no. 11, pp. 2273-2279, June. 2017 (doi: 10.1109/JLT.2017.2660520).
[13] H. Zhang, Y. Jiao, G. Zhao, C. Zhang,“CRLH-SIW-based leaky wave antenna with low cross-polarisation for Ku-band applications”, Electronics Letters, vol. 52, No. 17, pp. 1426–1428, Aug. 2016 (doi: 10.1049/el.2016.1825).
[14] L.O. Goldstone, A.A. Oliner, “Leaky wave antennas I: rectangular waveguides”, IEEE Trans. on Antennas and Propagation, vol. 7, no. 4, pp. 307-319, Oct. 1959 (doi: 10.1109/TAP.1959.1144702).
[15] Y. Yu, Z. H. Jiang, H. Zhang, Z. Zhang, W. Hong, “A low-profile beam forming patch array with a cosecant fourth power pattern for millimeter-wave synthetic aperture radar applications”, IEEE Trans. on Antennas and Propagation, vol. 68, no. 9, pp. 6486-6496, Sept. 2020 (doi: 10.1109/TAP.2020.2999669).
[16] M.S. Afifi, “Cross-polarized current analysis and control for parabolic reflector antennas”, Journal of King Saud University- Engineering Sciences, vol. 1, no. 1–2, pp. 147-159, 1989 (doi: 10.1016/S1018-3639(18)30866-3).
[17] M.K. Mohsen, M.S.B.M. Isa, A.B.A.M. Isa, M.K. Abdulhameed, M.L. Attiah, A.M. Dinar, “Design for radiation broadside direction using half-width microstrip leaky-wave antenna array”, International Journal of Electronincs and Communications, vol. 110, Article Number: 152839, Oct. 2019 (doi: 10.1016/j.aeue.2019.152839).
[18] J. Zehentner, J. Machac, P. Zabloudil, “Novel entire top surface planar leaky wave antenna”, Proceeding of the IEEE/EUMC, pp. 372-375, Munich, Germany, Oct. 2007 (doi: 10.1109/EUMC.2007.4405204).
[19] A.R. Mallahzadeh, S. Mohammad-Ali-Nezhad, “Periodic ridged leaky wave antenna design based on SIW technology”, IEEE Antennas and Wireless Propagation Letters, vol. 14, pp.354-357, oct. 2014 (doi: 10.1109/LAWP.2014.2361175).
[20] A. Kiani, F. Geran, S.M. Hashemi,K. Forooraghi, “Mathematical analysis of a modified closed-form formula for design a uniform leaky-wave antenna with ultra-low SLL”, Scientific Reports, vol. 9, no. 9372, June. 2019 (doi: 10.1038/s41598-019-44967-w).
[21] I. Ohtera, “On a forming of cosecant square beam using a curved leakywave structure”, IEEE Trans. on Antennas Propagation, vol. 49, no. 6, pp. 1004-1006, June 2001 (doi: 10.1109/8.931161).
[22]A. A. Oliner, “Leaky-Wave Antennas,” Antenna Engineering Handbook, 3rd ed, McGraw-Hill, New York, 1993.
[23] J. L. Volakis, Antenna Engineering Handbook, McGraw-Hill, New York, 2007.
[24] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, G. Conciauro, “Dispersion characteristics of substrate integrated rectangular waveguide”, IEEE Microwave. Wireless Compon. Letters, vol. 12, no. 9, pp. 333–335, Sept. 2002 (doi: 10.1109/LMWC.2002.803188).
[25] S.M.R. Mousavi, A. Naghsh, “Robust digital image watermarking method using graph-based transform (GBT) and genetic algorithm (GA)”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 39, pp. 13-22, Sec. 2017 (dor: 20.1001.1.23223871.1398.10.39.2.0) (in persian).
[26] A.R. Mallahzadeh, M.H. Amini, “Design of a leaky-wave long slot antenna using ridge waveguide”, IET Microwaves, Antennas and Propagation, vol. 8, no. 10, pp. 714-718, July 2014 (doi: 10.1109/EuCAP.2012.6206263).
_||_