طراحی سیستمی یک گیرنده غیرهمدوس کمتوان برای تحریک کاشتینههای عصبی بیسیم
محورهای موضوعی : انرژی های تجدیدپذیرفخرالسادات رستگاری 1 , مسعود دوستی 2 * , بهبد قلمکاری 3
1 - دانشکده مهندسی برق و کامپیوتر- واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده مهندسی برق و کامپیوتر- واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشکده مهندسی برق و کامپیوتر- واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: آشکارساز, کمتوان, گیرنده غیرهمدوس, دوسویه, تقویتکننده کم نویز,
چکیده مقاله :
در سال های اخیر فرستنده ـ گیرنده های کم توان، کاربردهای وسیعی در زمینه مهندسی پزشکی پیدا کرده اند. در این مقاله طراحی و شبیه سازی سیستمی یک گیرنده کم توان قابل کاشت در بدن برای تحریک سلول های مغز ارائه شده است. گیرنده مورد نظر به صورت کم توان با نرخ داده بالا در باند رادیویی صنعتی، علمی و پزشکی (ISM) برای استفاده در یک لینک دوسویه همزمان بی سیم جهت برقراری ارتباط بین سیستم کاشت شده در بدن و دنیای بیرون طراحی شده است. گیرنده ارائه شده با ساختار غیرهمدوس در فرکانس 4/2 گیگاهرتز با مدولاسیون کلید زنی خاموش-روشن (OOK) کار می کند. این گیرنده دارای نرخ خطای بیت (BER) کمتر از 001/0 و نرخ داده 100 مگابیت در ثانیه است. نتایج شبیه سازی سیستمی مدار پیشنهادی طراحی شده، بهره (S21) 4/26 دسی بل، تلفات برگشتی ورودی (S11) 39- دسی بل و عدد نویز (NF) 22/5 دسی بل را نشان می دهد. این نتایج مطابقت خوبی با محاسبات طراحی انجام شده دارد.
In recent years, low-power transceivers have found wide applications in medical engineering. In this paper, the system design and simulation of a low-power implantable receiver are presented for the case of stimulating brain cells. The receiver shows a high data rate in the industrial scientific and medical (ISM) band for being used in a bidirectional wireless full-duplex link and communication between the implanted system and the outside world. The proposed receiver has a non-coherent structure and operates at a frequency of 2.4 GHz with on-off keying (OOK) modulation. This receiver has a bit error rate (BER) of less than 0.001 and a data rate of 100 Mbps. The simulation results of the proposed circuit show a 26.4 dB gain (S21), a -39 dB input return loss (S11) and a 5.22 dB noise figure (NF). The simulation results are in good agreement with the analytical calculations.
[1] K.-W. Yang, K. Oh, S. Ha, "Challenges in scaling down of free-floating implantable neural interfaces to millimeter scale”, IEEE Access, vol. 8, pp. 133295-133320, July 2020 (doi:10.1109/ACCESS.2020.3007517).
[2] M. R. Olchik, M. Ghisi, A. Ayres, A. F. S. Schuh, P. P. Oppitz, C. R. d. M. Rieder, "The impact of deep brain stimulation on the quality of life and swallowing in individuals with Parkinson’s disease”, International Archives of Otorhinolaryngology, vol. 22, no. 2, pp. 125-129, Apr. 2018 (doi: 10.1055/s-0037-1603466).
[3] M.-C. Lee, A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, P. T. Wang, A. H. Do, Z. Nenadic, P. Heydari, “A CMOS medradio transceiver with supply-modulated power saving technique for an implantable brain–machine interface system", IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1541-1552, Mar. 2019 (doi:10.1109 / JSSC.2019.2899521).
[4] H. Bahrami, S. A. Mirbozorgi, A. T. Nguyen, B. Gosselin, L. A. Rusch, "System-level design of a full-duplex wireless transceiver for brain–machine interfaces", IEEE Trans. on Microwave Theory and Techniques, vol. 64, no. 10, pp. 3332-3340, Oct. 2016 (doi:10.1109/TMTT.2016.2600301).
[5] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch, B. Gosselin, "A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants", IEEE Trans. on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 643-653, Oct. 2015 (doi:10.1109/TBCAS.2015.2466592).
[6] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. Rusch, B. Gosselin, "A full-duplex wireless integrated transceiver for implant-to-Air data communications", Proceeding of the IEEE/CICC, pp. 1082–1085, San Jose, CA, USA, Jun. 2015 (doi:10.1109/CICC.2015.7338430).
[7] J. Rosenthal, A. Sharma, E. Kampianakis, M. S. Reynolds,, "A 25 Mbps, 12.4 pJ/b DQPSK backscatter data uplink for the neurodisc brain–computer interface", IEEE Trans. on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 858-867, Aug. 2019 (doi:10.1109/TBCAS.2019.2938511).
[8] J. Rosenthal, E. Kampianakis, A. Sharma, M. S. Reynolds, "A 6.25 Mbps, 12.4 pJ/bit DQPSK backscatter wireless uplink for the NeuroDisc brain-computer interface”, Proceeding of the IEEE/BioCAS, pp. 1-4, Cleveland, OH, USA, Oct. 2018 (doi: 10.1109/BIOCAS.2018.8584667).
[9] G. N. Angotzi, F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, L. Berdondini, "SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings”, Biosensors and Bioelectronics, vol. 126, pp. 355-364, Feb. 2019 (doi: 10.1016 /j.bios .2018.10.032).
[10] C. M. Lopez, "Unraveling the brain with high-density CMOS neural probes: tackling the challenges of neural interfacing”, IEEE Solid-State Circuits Magazine, vol. 11, no. 4, pp. 43-50, Nov. 2019 (doi: 10.1109/ MSSC .2019.2939338).
[11] H. Bahrami, S. A. Mirbozorgi, L. A. Rusch, B. Gosselin, "BER performance of implant-to-air high-speed UWB data communications for neural recording systems", Proceeding of the IEEE/EMBC, pp.3961–3964, Chicago, IL, USA, Aug. 2014 (doi:10.1109/EMBC.2014.6944491).
[12] P. P. Mercier, A. P. Chandracasan, "Ultra-low-power short-range radios", Ed. switzerland: Springer, 2015.
[13] C. Ma, C. Hu, J. Cheng, L. Xia, P. Y. Chiang, "A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service", IEEE Trans. on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 841–850, Feb.2013 (doi:10.1109/TBCAS.2013.2253555).
[14] K. Kim, S. Yun, S. Lee, S. Nam, "Low-power CMOS super-regenerative receiver with a digitally self-quenching loop", IEEE Microwave and Wireless Components Letters, vol. 22, no.9, pp. 486–488, Sep. 2012 (doi: 10.1109 /LMWC.2012.2211581).
[15] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, W. Liu, "An integrated 256-channel epiretinal prosthesis", IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1946–1956, Sep. 2010 (doi:10.1109/JSSC.2010.2055371).
[16] S.-Y. Lee, P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh, "A 2.4 GHz ISM band OOK transceiver with High energy efficiency for biomedical implantable applications", IEEE Trans. on Biomedical Circuits and Systems, vol. 14, no. 1, pp. 113-124, Dec. 2019 (doi:10.1109/TBCAS.2019.2963202).
[17] C.-W. Chou, L.-C. Liu, C.-Y. Wu, " A medradio-band Low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices", Proceeding of the IEEE/EMBS, pp.5171-5174, Osaka, Japan, Jul. 2013 (doi: 10.1109/EMBC.2013.6610713).
[18] B. Razavi, "RF microelectronic", 2th Edition, Prentice Hall, 2012.
[19] H. Bahrami, B. Gosselin, L. A. Rusch, "Realistic modeling of the biological channel for the design of implantable wireless UWB communication systems", Proceeding of the IEEE/EMBS, pp.6015-6018, San Diego, CA, USA, Nov. 2012 (doi:10.1109/EMBC.2012.6347365).
[20] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhouand, L. Huang, J. van de Molengraft, K Imamura, B. en Busze, F. Bouwens, M. Konijnenburget, J. Santana, A. Breeschoten, J. Huisken, K. Philips,G. Dolmans, H.Groot, "A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications", IEEE Trans. Biomedical Circuits and Systems, vol. 5, no. 6, pp. 523–534, Dec. 2011(doi:10.1109/TBCAS.2011.2173340).
_||_[1] K.-W. Yang, K. Oh, S. Ha, "Challenges in scaling down of free-floating implantable neural interfaces to millimeter scale”, IEEE Access, vol. 8, pp. 133295-133320, July 2020 (doi:10.1109/ACCESS.2020.3007517).
[2] M. R. Olchik, M. Ghisi, A. Ayres, A. F. S. Schuh, P. P. Oppitz, C. R. d. M. Rieder, "The impact of deep brain stimulation on the quality of life and swallowing in individuals with Parkinson’s disease”, International Archives of Otorhinolaryngology, vol. 22, no. 2, pp. 125-129, Apr. 2018 (doi: 10.1055/s-0037-1603466).
[3] M.-C. Lee, A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, P. T. Wang, A. H. Do, Z. Nenadic, P. Heydari, “A CMOS medradio transceiver with supply-modulated power saving technique for an implantable brain–machine interface system", IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1541-1552, Mar. 2019 (doi:10.1109 / JSSC.2019.2899521).
[4] H. Bahrami, S. A. Mirbozorgi, A. T. Nguyen, B. Gosselin, L. A. Rusch, "System-level design of a full-duplex wireless transceiver for brain–machine interfaces", IEEE Trans. on Microwave Theory and Techniques, vol. 64, no. 10, pp. 3332-3340, Oct. 2016 (doi:10.1109/TMTT.2016.2600301).
[5] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch, B. Gosselin, "A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants", IEEE Trans. on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 643-653, Oct. 2015 (doi:10.1109/TBCAS.2015.2466592).
[6] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. Rusch, B. Gosselin, "A full-duplex wireless integrated transceiver for implant-to-Air data communications", Proceeding of the IEEE/CICC, pp. 1082–1085, San Jose, CA, USA, Jun. 2015 (doi:10.1109/CICC.2015.7338430).
[7] J. Rosenthal, A. Sharma, E. Kampianakis, M. S. Reynolds,, "A 25 Mbps, 12.4 pJ/b DQPSK backscatter data uplink for the neurodisc brain–computer interface", IEEE Trans. on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 858-867, Aug. 2019 (doi:10.1109/TBCAS.2019.2938511).
[8] J. Rosenthal, E. Kampianakis, A. Sharma, M. S. Reynolds, "A 6.25 Mbps, 12.4 pJ/bit DQPSK backscatter wireless uplink for the NeuroDisc brain-computer interface”, Proceeding of the IEEE/BioCAS, pp. 1-4, Cleveland, OH, USA, Oct. 2018 (doi: 10.1109/BIOCAS.2018.8584667).
[9] G. N. Angotzi, F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, L. Berdondini, "SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings”, Biosensors and Bioelectronics, vol. 126, pp. 355-364, Feb. 2019 (doi: 10.1016 /j.bios .2018.10.032).
[10] C. M. Lopez, "Unraveling the brain with high-density CMOS neural probes: tackling the challenges of neural interfacing”, IEEE Solid-State Circuits Magazine, vol. 11, no. 4, pp. 43-50, Nov. 2019 (doi: 10.1109/ MSSC .2019.2939338).
[11] H. Bahrami, S. A. Mirbozorgi, L. A. Rusch, B. Gosselin, "BER performance of implant-to-air high-speed UWB data communications for neural recording systems", Proceeding of the IEEE/EMBC, pp.3961–3964, Chicago, IL, USA, Aug. 2014 (doi:10.1109/EMBC.2014.6944491).
[12] P. P. Mercier, A. P. Chandracasan, "Ultra-low-power short-range radios", Ed. switzerland: Springer, 2015.
[13] C. Ma, C. Hu, J. Cheng, L. Xia, P. Y. Chiang, "A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service", IEEE Trans. on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 841–850, Feb.2013 (doi:10.1109/TBCAS.2013.2253555).
[14] K. Kim, S. Yun, S. Lee, S. Nam, "Low-power CMOS super-regenerative receiver with a digitally self-quenching loop", IEEE Microwave and Wireless Components Letters, vol. 22, no.9, pp. 486–488, Sep. 2012 (doi: 10.1109 /LMWC.2012.2211581).
[15] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, W. Liu, "An integrated 256-channel epiretinal prosthesis", IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1946–1956, Sep. 2010 (doi:10.1109/JSSC.2010.2055371).
[16] S.-Y. Lee, P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh, "A 2.4 GHz ISM band OOK transceiver with High energy efficiency for biomedical implantable applications", IEEE Trans. on Biomedical Circuits and Systems, vol. 14, no. 1, pp. 113-124, Dec. 2019 (doi:10.1109/TBCAS.2019.2963202).
[17] C.-W. Chou, L.-C. Liu, C.-Y. Wu, " A medradio-band Low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices", Proceeding of the IEEE/EMBS, pp.5171-5174, Osaka, Japan, Jul. 2013 (doi: 10.1109/EMBC.2013.6610713).
[18] B. Razavi, "RF microelectronic", 2th Edition, Prentice Hall, 2012.
[19] H. Bahrami, B. Gosselin, L. A. Rusch, "Realistic modeling of the biological channel for the design of implantable wireless UWB communication systems", Proceeding of the IEEE/EMBS, pp.6015-6018, San Diego, CA, USA, Nov. 2012 (doi:10.1109/EMBC.2012.6347365).
[20] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhouand, L. Huang, J. van de Molengraft, K Imamura, B. en Busze, F. Bouwens, M. Konijnenburget, J. Santana, A. Breeschoten, J. Huisken, K. Philips,G. Dolmans, H.Groot, "A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications", IEEE Trans. Biomedical Circuits and Systems, vol. 5, no. 6, pp. 523–534, Dec. 2011(doi:10.1109/TBCAS.2011.2173340).