System Design of a Low-power Non-coherent Receiver for Stimulating Wireless Neural Implants
Subject Areas : Renewable energyFakhralsadat Rastegari 1 , Massoud Dousti 2 * , Behbod Ghalamkari 3
1 - Department of Electrical and Computer Engineering- Islamic Azad University, Science and Research Branch, Tehran, Iran
2 - Department of Electrical and Computer Engineering- Islamic Azad University, Science and Research Branch, Tehran, Iran
3 - Department of Electrical and Computer Engineering- Islamic Azad University, Science and Research Branch, Tehran, Iran
Keywords: Detector, low noise amplifier, non-coherent receiver, full-duplex, low-power,
Abstract :
In recent years, low-power transceivers have found wide applications in medical engineering. In this paper, the system design and simulation of a low-power implantable receiver are presented for the case of stimulating brain cells. The receiver shows a high data rate in the industrial scientific and medical (ISM) band for being used in a bidirectional wireless full-duplex link and communication between the implanted system and the outside world. The proposed receiver has a non-coherent structure and operates at a frequency of 2.4 GHz with on-off keying (OOK) modulation. This receiver has a bit error rate (BER) of less than 0.001 and a data rate of 100 Mbps. The simulation results of the proposed circuit show a 26.4 dB gain (S21), a -39 dB input return loss (S11) and a 5.22 dB noise figure (NF). The simulation results are in good agreement with the analytical calculations.
[1] K.-W. Yang, K. Oh, S. Ha, "Challenges in scaling down of free-floating implantable neural interfaces to millimeter scale”, IEEE Access, vol. 8, pp. 133295-133320, July 2020 (doi:10.1109/ACCESS.2020.3007517).
[2] M. R. Olchik, M. Ghisi, A. Ayres, A. F. S. Schuh, P. P. Oppitz, C. R. d. M. Rieder, "The impact of deep brain stimulation on the quality of life and swallowing in individuals with Parkinson’s disease”, International Archives of Otorhinolaryngology, vol. 22, no. 2, pp. 125-129, Apr. 2018 (doi: 10.1055/s-0037-1603466).
[3] M.-C. Lee, A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, P. T. Wang, A. H. Do, Z. Nenadic, P. Heydari, “A CMOS medradio transceiver with supply-modulated power saving technique for an implantable brain–machine interface system", IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1541-1552, Mar. 2019 (doi:10.1109 / JSSC.2019.2899521).
[4] H. Bahrami, S. A. Mirbozorgi, A. T. Nguyen, B. Gosselin, L. A. Rusch, "System-level design of a full-duplex wireless transceiver for brain–machine interfaces", IEEE Trans. on Microwave Theory and Techniques, vol. 64, no. 10, pp. 3332-3340, Oct. 2016 (doi:10.1109/TMTT.2016.2600301).
[5] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch, B. Gosselin, "A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants", IEEE Trans. on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 643-653, Oct. 2015 (doi:10.1109/TBCAS.2015.2466592).
[6] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. Rusch, B. Gosselin, "A full-duplex wireless integrated transceiver for implant-to-Air data communications", Proceeding of the IEEE/CICC, pp. 1082–1085, San Jose, CA, USA, Jun. 2015 (doi:10.1109/CICC.2015.7338430).
[7] J. Rosenthal, A. Sharma, E. Kampianakis, M. S. Reynolds,, "A 25 Mbps, 12.4 pJ/b DQPSK backscatter data uplink for the neurodisc brain–computer interface", IEEE Trans. on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 858-867, Aug. 2019 (doi:10.1109/TBCAS.2019.2938511).
[8] J. Rosenthal, E. Kampianakis, A. Sharma, M. S. Reynolds, "A 6.25 Mbps, 12.4 pJ/bit DQPSK backscatter wireless uplink for the NeuroDisc brain-computer interface”, Proceeding of the IEEE/BioCAS, pp. 1-4, Cleveland, OH, USA, Oct. 2018 (doi: 10.1109/BIOCAS.2018.8584667).
[9] G. N. Angotzi, F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, L. Berdondini, "SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings”, Biosensors and Bioelectronics, vol. 126, pp. 355-364, Feb. 2019 (doi: 10.1016 /j.bios .2018.10.032).
[10] C. M. Lopez, "Unraveling the brain with high-density CMOS neural probes: tackling the challenges of neural interfacing”, IEEE Solid-State Circuits Magazine, vol. 11, no. 4, pp. 43-50, Nov. 2019 (doi: 10.1109/ MSSC .2019.2939338).
[11] H. Bahrami, S. A. Mirbozorgi, L. A. Rusch, B. Gosselin, "BER performance of implant-to-air high-speed UWB data communications for neural recording systems", Proceeding of the IEEE/EMBC, pp.3961–3964, Chicago, IL, USA, Aug. 2014 (doi:10.1109/EMBC.2014.6944491).
[12] P. P. Mercier, A. P. Chandracasan, "Ultra-low-power short-range radios", Ed. switzerland: Springer, 2015.
[13] C. Ma, C. Hu, J. Cheng, L. Xia, P. Y. Chiang, "A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service", IEEE Trans. on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 841–850, Feb.2013 (doi:10.1109/TBCAS.2013.2253555).
[14] K. Kim, S. Yun, S. Lee, S. Nam, "Low-power CMOS super-regenerative receiver with a digitally self-quenching loop", IEEE Microwave and Wireless Components Letters, vol. 22, no.9, pp. 486–488, Sep. 2012 (doi: 10.1109 /LMWC.2012.2211581).
[15] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, W. Liu, "An integrated 256-channel epiretinal prosthesis", IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1946–1956, Sep. 2010 (doi:10.1109/JSSC.2010.2055371).
[16] S.-Y. Lee, P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh, "A 2.4 GHz ISM band OOK transceiver with High energy efficiency for biomedical implantable applications", IEEE Trans. on Biomedical Circuits and Systems, vol. 14, no. 1, pp. 113-124, Dec. 2019 (doi:10.1109/TBCAS.2019.2963202).
[17] C.-W. Chou, L.-C. Liu, C.-Y. Wu, " A medradio-band Low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices", Proceeding of the IEEE/EMBS, pp.5171-5174, Osaka, Japan, Jul. 2013 (doi: 10.1109/EMBC.2013.6610713).
[18] B. Razavi, "RF microelectronic", 2th Edition, Prentice Hall, 2012.
[19] H. Bahrami, B. Gosselin, L. A. Rusch, "Realistic modeling of the biological channel for the design of implantable wireless UWB communication systems", Proceeding of the IEEE/EMBS, pp.6015-6018, San Diego, CA, USA, Nov. 2012 (doi:10.1109/EMBC.2012.6347365).
[20] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhouand, L. Huang, J. van de Molengraft, K Imamura, B. en Busze, F. Bouwens, M. Konijnenburget, J. Santana, A. Breeschoten, J. Huisken, K. Philips,G. Dolmans, H.Groot, "A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications", IEEE Trans. Biomedical Circuits and Systems, vol. 5, no. 6, pp. 523–534, Dec. 2011(doi:10.1109/TBCAS.2011.2173340).
_||_[1] K.-W. Yang, K. Oh, S. Ha, "Challenges in scaling down of free-floating implantable neural interfaces to millimeter scale”, IEEE Access, vol. 8, pp. 133295-133320, July 2020 (doi:10.1109/ACCESS.2020.3007517).
[2] M. R. Olchik, M. Ghisi, A. Ayres, A. F. S. Schuh, P. P. Oppitz, C. R. d. M. Rieder, "The impact of deep brain stimulation on the quality of life and swallowing in individuals with Parkinson’s disease”, International Archives of Otorhinolaryngology, vol. 22, no. 2, pp. 125-129, Apr. 2018 (doi: 10.1055/s-0037-1603466).
[3] M.-C. Lee, A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, P. T. Wang, A. H. Do, Z. Nenadic, P. Heydari, “A CMOS medradio transceiver with supply-modulated power saving technique for an implantable brain–machine interface system", IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1541-1552, Mar. 2019 (doi:10.1109 / JSSC.2019.2899521).
[4] H. Bahrami, S. A. Mirbozorgi, A. T. Nguyen, B. Gosselin, L. A. Rusch, "System-level design of a full-duplex wireless transceiver for brain–machine interfaces", IEEE Trans. on Microwave Theory and Techniques, vol. 64, no. 10, pp. 3332-3340, Oct. 2016 (doi:10.1109/TMTT.2016.2600301).
[5] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch, B. Gosselin, "A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants", IEEE Trans. on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 643-653, Oct. 2015 (doi:10.1109/TBCAS.2015.2466592).
[6] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. Rusch, B. Gosselin, "A full-duplex wireless integrated transceiver for implant-to-Air data communications", Proceeding of the IEEE/CICC, pp. 1082–1085, San Jose, CA, USA, Jun. 2015 (doi:10.1109/CICC.2015.7338430).
[7] J. Rosenthal, A. Sharma, E. Kampianakis, M. S. Reynolds,, "A 25 Mbps, 12.4 pJ/b DQPSK backscatter data uplink for the neurodisc brain–computer interface", IEEE Trans. on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 858-867, Aug. 2019 (doi:10.1109/TBCAS.2019.2938511).
[8] J. Rosenthal, E. Kampianakis, A. Sharma, M. S. Reynolds, "A 6.25 Mbps, 12.4 pJ/bit DQPSK backscatter wireless uplink for the NeuroDisc brain-computer interface”, Proceeding of the IEEE/BioCAS, pp. 1-4, Cleveland, OH, USA, Oct. 2018 (doi: 10.1109/BIOCAS.2018.8584667).
[9] G. N. Angotzi, F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, L. Berdondini, "SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings”, Biosensors and Bioelectronics, vol. 126, pp. 355-364, Feb. 2019 (doi: 10.1016 /j.bios .2018.10.032).
[10] C. M. Lopez, "Unraveling the brain with high-density CMOS neural probes: tackling the challenges of neural interfacing”, IEEE Solid-State Circuits Magazine, vol. 11, no. 4, pp. 43-50, Nov. 2019 (doi: 10.1109/ MSSC .2019.2939338).
[11] H. Bahrami, S. A. Mirbozorgi, L. A. Rusch, B. Gosselin, "BER performance of implant-to-air high-speed UWB data communications for neural recording systems", Proceeding of the IEEE/EMBC, pp.3961–3964, Chicago, IL, USA, Aug. 2014 (doi:10.1109/EMBC.2014.6944491).
[12] P. P. Mercier, A. P. Chandracasan, "Ultra-low-power short-range radios", Ed. switzerland: Springer, 2015.
[13] C. Ma, C. Hu, J. Cheng, L. Xia, P. Y. Chiang, "A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service", IEEE Trans. on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 841–850, Feb.2013 (doi:10.1109/TBCAS.2013.2253555).
[14] K. Kim, S. Yun, S. Lee, S. Nam, "Low-power CMOS super-regenerative receiver with a digitally self-quenching loop", IEEE Microwave and Wireless Components Letters, vol. 22, no.9, pp. 486–488, Sep. 2012 (doi: 10.1109 /LMWC.2012.2211581).
[15] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, W. Liu, "An integrated 256-channel epiretinal prosthesis", IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1946–1956, Sep. 2010 (doi:10.1109/JSSC.2010.2055371).
[16] S.-Y. Lee, P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh, "A 2.4 GHz ISM band OOK transceiver with High energy efficiency for biomedical implantable applications", IEEE Trans. on Biomedical Circuits and Systems, vol. 14, no. 1, pp. 113-124, Dec. 2019 (doi:10.1109/TBCAS.2019.2963202).
[17] C.-W. Chou, L.-C. Liu, C.-Y. Wu, " A medradio-band Low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices", Proceeding of the IEEE/EMBS, pp.5171-5174, Osaka, Japan, Jul. 2013 (doi: 10.1109/EMBC.2013.6610713).
[18] B. Razavi, "RF microelectronic", 2th Edition, Prentice Hall, 2012.
[19] H. Bahrami, B. Gosselin, L. A. Rusch, "Realistic modeling of the biological channel for the design of implantable wireless UWB communication systems", Proceeding of the IEEE/EMBS, pp.6015-6018, San Diego, CA, USA, Nov. 2012 (doi:10.1109/EMBC.2012.6347365).
[20] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhouand, L. Huang, J. van de Molengraft, K Imamura, B. en Busze, F. Bouwens, M. Konijnenburget, J. Santana, A. Breeschoten, J. Huisken, K. Philips,G. Dolmans, H.Groot, "A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications", IEEE Trans. Biomedical Circuits and Systems, vol. 5, no. 6, pp. 523–534, Dec. 2011(doi:10.1109/TBCAS.2011.2173340).