A Multi-objective Leagile Demand-Driven Optimization Model incorporating a Reliable Omnichannel Retailer: A Case Study
Subject Areas : Mathematical OptimizationFarnaz Javadi Gargari 1 , Zahra Saeidi-Mobarakeh 2 , Hossein Amoozad Khalili 3
1 - Industrial Engineering Department, Alzahra University, Deh Vanak, Tehran, Iran
2 - Department of Industrial Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Industrial Engineering, sari Branch, Islamic Azad University, sari, Iran
Keywords: Supply Chain Optimization, Hybrid Integrated Meta-heuristic Algorithm, Leagile Demand-Driven Systems, Reliable Omnichannel, Case Study,
Abstract :
This research proposed a comprehensive model designed for the optimization of supply chain networks, particularly emphasizing leagile demand-driven systems within the context of omnichannel operations. The proposed model integrates various parameters such as total cost, lead time, service level, and residual capacity, addressing the complex interdependencies among an omnichannel environment of retailers. To enhance the model's reliability, a hybrid meta-heuristic algorithm is employed, combining the strengths of MOEA/D-DE (Multi-Objective Evolutionary Algorithm with Differential Evolution), IBEA (Indicator-Based Evolutionary Algorithm), and NSGA-II (Non-dominated Sorting Genetic Algorithm II). The collaborative optimization approach ensures adaptability and efficiency in addressing diverse and intricate optimization challenges inherent in omnichannel networks. The numerical data from a case study on the supply of sanitary masks in Tabriz, Iran, during August 2021 is utilized to validate the model within the specific omnichannel context. The study includes a thorough sensitivity analysis, demonstrating the model's robustness against disturbances in the omnichannel network. The consistent performance of the odel across various disruption scenarios underscores its reliability and efficacy in ensuring the stability of supply chain operations within omni-channel frameworks. This observed resilience significantly enhances the overall robustness of the supply chain, especially when confronted with disruptive events. The model's ability to maintain stability under diverse conditions contributes to fortifying the supply chain against potential disruptions, thereby augmenting its adaptive capabilities in dynamic environments..Managerial and practical implications are discussed, emphasizing the significance of the proposed reliable omnichannel approach in leagile demand-driven systems.
[1] Javadi Gargari, F., & Seifbarghy, M. (2020). Solving multi-objective supplier selection and quota allocation problem under disruption using a scenario-based approach. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva, 40(3), 78-89. https://doi.org/10.30765/er.40.3.08
[2] Kou, G., Dinçer, H., Yüksel, S., & Alotaibi, F. S. (2024). Imputed expert decision recommendation system for QFD-based omnichannel strategy selection for financial services. International Journal of Information Technology & Decision Making, 23(01), 141-170. https://doi.org/10.1142/S0219622023300033
[3] Sheykhzadeh, M., Ghasemi, R., Vandchali, H. R., Sepehri, A., & Torabi, S. A. (2024). A hybrid decision-making framework for a supplier selection problem based on lean, agile, resilience, and green criteria: a case study of a pharmaceutical industry. Environment, Development and Sustainability, 1-28. https://doi.org/10.1007/s10668-023-04135-7
[4] Liang, Y., Li, H., Liang, S., Yeboah, F. K., & Yang, Z. (2024). Food demand‐driven scarce water use amplified by pollution in China. Earth's Future, 12(2), e2023EF004052. https://doi.org/10.1029/2023EF004052
[5] Khorasani, S. T., Cross, J., & Maghazei, O. (2020). Lean supply chain management in healthcare: a systematic review and meta-study. International Journal of Lean Six Sigma, 11(1), 1-34. https://doi.org/10.1108/IJLSS-07-2018-0069
[6] Moyano-Fuentes, J., Maqueira-Marin, J. M., Martinez-Jurado, P. J., & Sacristan-Diaz, M. (2021). Extending lean management along the supply chain: impact on efficiency. Journal of Manufacturing Technology Management, 32(1), 63-84. https://doi.org/10.1108/JMTM-10-2019-0388
[7] Reyes, J., Mula, J., & Díaz-Madroñero, M. (2023). Development of a conceptual model for lean supply chain planning in industry 4.0: multidimensional analysis for operations management. Production Planning & Control, 34(12), 1209-1224. https://doi.org/10.1080/09537287.2021.1993373
[8] Garcia-Buendia, N., Moyano-Fuentes, J., Maqueira, J. M., & Avella, L. (2023). The lean supply chain management response to technology uncertainty: consequences for operational performance and competitiveness. Journal of Manufacturing Technology Management, 34(1), 67-86. https://doi.org/10.1108/JMTM-07-2022-0250
[9] Al-Dweiri, M., Ramadan, B., Rawshdeh, A., Nassoura, A., Al-Hamad, A., & Ahmad, A. (2024). The mediating role of lean operations on the relationship between supply chain integration and operational performance. Uncertain Supply Chain Management, 12(2), 1163-1174. https://doi.org/10.5267/j.uscm.2023.11.017
[10] Raji, I. O., Shevtshenko, E., Rossi, T., & Strozzi, F. (2021). Industry 4.0 technologies as enablers of lean and agile supply chain strategies: an exploratory investigation. The International Journal of Logistics Management, 32(4), 1150-1189. https://doi.org/10.1108/IJLM-04-2020-0157
[11] Oliveira-Dias, D. D., Maqueira Marín, J. M., & Moyano-Fuentes, J. (2022). Lean and agile supply chain strategies: the role of mature and emerging information technologies. The International Journal of Logistics Management, 33(5), 221-243. https://doi.org/10.1108/IJLM-05-2022-0235
[12] Suharto, S. (2023). Supply chain ambidexterity, business performance and mediating role of lean and agile supply chain strategies. Uncertain Supply Chain Management, 11(2), 557-564. DOI:10.5267/j.uscm.2023.2.009
[13] Tamtam, F., & Tourabi, A. (2023). An integrated fuzzy QFD approach to leagile supply chain assessment during the COVID-19 crisis. International Journal of Industrial and Systems Engineering, 45(1), 29-39. https://doi.org/10.1504/IJISE.2023.133524
[14] Yadav, R., Yadav, V., Mittal, M. L., Jain, R., & Yadav, J. (2024). The impact of Leagile software development on operational performance. International Journal of Lean Six Sigma, 15(2), 347-371. https://doi.org/10.1108/IJLSS-06-2021-0111
[15] Nikneshan, P., Shahin, A., & Davazdahemami, H. (2024). Proposing a framework for analyzing the effect of lean and agile innovation on lean and agile supply chain. International Journal of Quality & Reliability Management, 41(1), 291-323. https://doi.org/10.1108/IJQRM-04-2022-0143
[16] Babaeinesami, A., Tohidi, H., & Seyedaliakbar, S. M. (2022). Designing a data-driven leagile sustainable closed-loop supply chain network. In Big Data and Information Theory (pp. 52-64). Routledge. https://doi.org/ 10.4324/9781003289173-6
[17] Heidari, M., & Rabbani, M. (2023). Leagile sustainable supply chain network design considering disruption risk by C-Var approach: a case study. International Journal of System Assurance Engineering and Management, 14(3), 1062-1088. https://doi.org/10.1007/s13198-023-01920-5
[18] Rostami, O., Tavakoli, M., Tajally, A., & GhanavatiNejad, M. (2023). A goal programming-based fuzzy best–worst method for the viable supplier selection problem: a case study. Soft Computing, 27(6), 2827-2852. https://doi.org/10.1016/j.ijinfomgt.2019.03.004
[19] Gao, Y., Lu, S., Cheng, H., & Liu, X. (2024). Data-driven robust optimization of dual-channel closed-loop supply chain network design considering uncertain demand and carbon cap-and-trade policy. Computers & Industrial Engineering, 187, 109811. https://doi.org/10.1016/j.cie.2023.109811
[20] Chang, V., Xu, Q. A., Hall, K., Wang, Y. A., & Kamal, M. M. (2023). Digitalization in omnichannel healthcare supply chain businesses: The role of smart wearable devices. Journal of Business Research, 156, 113369. https://doi.org/10.1016/j.jbusres.2022.113369
[21] Xu, J., Bai, Q., Li, Z., & Zhao, L. (2024). Maximizing the profit of omnichannel closed-loop supply chains with mean–variance criteria. Computers and Electrical Engineering, 113, 109030. https://doi.org/10.1016/j.compeleceng.2023.109030
[22] Song, S., Tappia, E., Song, G., Shi, X., & Cheng, T. C. E. (2024). Fostering supply chain resilience for omni-channel retailers: A two-phase approach for supplier selection and demand allocation under disruption risks. Expert Systems with Applications, 239, 122368. https://doi.org/10.1016/j.eswa.2023.122368
[23] Ishfaq, R., Darby, J., & Gibson, B. (2024). Adapting the retail business model to omnichannel strategy: A supply chain management perspective. Journal of Business Logistics, 45(1), e12352. https://doi.org/10.1111/jbl.12352
[24] Song, Y., Wang, F., & Chen, X. (2019). An improved genetic algorithm for numerical function optimization. Applied Intelligence, 49, 1880-1902. https://doi.org/10.1007/s10489-018-1370-4
[25] Albadr, M. A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 12(11), 1758. https://doi.org/10.3390/sym12111758
[26] Yeh, W. C., Lin, Y. P., Liang, Y. C., & Lai, C. M. (2021). Convolution neural network hyperparameter optimization using simplified swarm optimization. arXiv preprint arXiv:2103.03995.
https://doi.org/10.48550/arXiv.2103.03995
[27] Fromer, J. C., & Coley, C. W. (2023). Computer-aided multi-objective optimization in small molecule discovery. Patterns, 4(2). https://doi.org/10.1016/j.patter.2023.100678
[28] Jangir, P., Buch, H., Mirjalili, S., & Manoharan, P. (2023). MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems. Evolutionary Intelligence, 16(1), 169-195. https://doi.org/10.1007/s12065-021-00649-z
[29] Xu, Y., Zhang, H., Huang, L., Qu, R., & Nojima, Y. (2023). A Pareto Front grid guided multi-objective evolutionary algorithm. Applied Soft Computing, 136, 110095. https://doi.org/10.1016/j.asoc.2023.110095
[30] Feng, Z. K., Zhang, L., Mo, L., Wang, Y. Q., & Niu, W. J. (2024). A multi-objective cooperation search algorithm for cascade reservoirs operation optimization considering power generation and ecological flows. Applied Soft Computing, 150, 111085. https://doi.org/10.1016/j.asoc.2023.111085
[31] Behera, I., & Sobhanayak, S. (2024). Task scheduling optimization in heterogeneous cloud computing environments: A hybrid GA-GWO approach. Journal of Parallel and Distributed Computing, 183, 104766. https://doi.org/10.1016/j.jpdc.2023.104766
[32] Zhu, Z., Li, X., Chen, H., Zhou, X., & Deng, W. (2024). An effective and robust genetic algorithm with hybrid multi-strategy and mechanism for airport gate allocation. Information Sciences, 654, 119892. https://doi.org/10.1016/j.ins.2023.119892
[33] Parhi, S. K., & Panigrahi, S. K. (2024). Alkali–silica reaction expansion prediction in concrete using hybrid metaheuristic optimized machine learning algorithms. Asian Journal of Civil Engineering, 25(1), 1091-1113. https://doi.org/10.1007/s00521-022-07724-1
[34] Nasiri Janagha, M. R., Javadi Gargari, F., Amoozad Khalili, H., & Saeidi-Mobarakeh, Z. (2024). Synergizing efficiency, flexibility, and sustainability of value chain to optimization of energy consumption. Journal of Industrial and Systems Engineering. Synergizing efficiency, flexibility, and sustainability of value chain to optimization of energy consumption. (jise.ir)
[35] Chen, Z., & Hammad, A. W. (2023). Mathematical modelling and simulation in construction supply chain management. Automation in Construction, 156, 105147. https://doi.org/10.1016/j.autcon.2023.105147
[36] Gargari, F. J., Amoozad-Khalili, H., & Tavakkoli-Mogaddam, R. (2021). Fuzzy Multi-Objective Scenario-based Stochastic Programming to Optimize Supply Chain. Iranian Journal of Operations Research, 12(2), 54-72. Fuzzy Multi-Objective Scenario-based Stochastic Programming to Optimize Supply Chain (iors.ir)
[37] Olayiwola, M. O., Alaje, A. I., & Yunus, A. O. (2024). A caputo fractional order financial mathematical model analyzing the impact of an adaptive minimum interest rate and maximum investment demand. Results in Control and Optimization, 14, 100349. https://doi.org/10.1016/j.rico.2023.100349
[38] Kim, S., Park, J., Chung, W., Adams, D., & Lee, J. H. (2024). Techno-economic analysis for design and management of international green hydrogen supply chain under uncertainty: An integrated temporal planning approach. Energy Conversion and Management, 301, 118010. https://doi.org/10.1016/j.enconman.2023.118010
[39] MacLennan, H., Lewis, E. J., & Roman, J. (2024). Critical Analysis on the Challenges of Product Distribution in Global Infrastructure and Value-Added Systems in Logistics and Supply Chain Management. In Evolution of Cross-Sector Cyber Intelligent Markets (pp. 1-17). IGI Global. DOI: 10.4018/979-8-3693-1970-3.ch001
[40] Vanvuchelen, N., De Boeck, K., & Boute, R. N. (2024). Cluster-based lateral transshipments for the Zambian health supply chain. European Journal of Operational Research, 313(1), 373-386. https://doi.org/10.1016/j.ejor.2023.08.005
[41] Behl, A., Sampat, B., Gaur, J., Pereira, V., Laker, B., Shankar, A., ... & Roohanifar, M. (2024). Can gamification help green supply chain management firms achieve sustainable results in servitized ecosystem? An empirical investigation. Technovation, 129, 102915. https://doi.org/10.1016/j.technovation.2023.102915
[42] Nunes, L. J., Casau, M., Dias, M. F., Matias, J. C. O., & Teixeira, L. C. (2023). Agroforest woody residual biomass-to-energy supply chain analysis: Feasible and sustainable renewable resource exploitation for an alternative to fossil fuels. Results in Engineering, 17, 101010. https://doi.org/10.1016/j.rineng.2023.101010
[43] Chidozie, B. C., Ramos, A. L., Ferreira, J. V., & Ferreira, L. P. (2023). Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review. Sustainability, 15(13), 9992. https://doi.org/10.3390/su15139992
[44] Bag, S., Srivastava, G., Cherrafi, A., Ali, A., & Singh, R. K. (2024). Data‐driven insights for circular and sustainable food supply chains: An empirical exploration of big data and predictive analytics in enhancing social sustainability performance. Business Strategy and the Environment, 33(2), 1369-1396. https://doi.org/10.1002/bse.3554
[45] Zhou, J., Zhang, J., Zhang, J., Yi, F., Wang, X., Sun, Y., ... & Wu, G. (2024). Hydrogen leakage source positioning method in deep belief network based on fully confined space Gaussian distribution model. International Journal of Hydrogen Energy, 63, 435-445. https://doi.org/10.1016/j.ijhydene.2024.03.156
[46] Ma, C., Xu, X., Pang, X., Li, X., Zhang, P., & Liu, L. (2024). Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty. Applied Energy, 356, 122425. https://doi.org/10.1016/j.apenergy.2023.122425
[47] Hu, Y., Zou, J., Zheng, J., Jiang, S., & Yang, S. (2024). A new framework of change response for dynamic multi-objective optimization. Expert Systems with Applications, 248, 123344. https://doi.org/10.1016/j.eswa.2024.123344
[48] Chen, Y., Zhong, J., Liu, W. L., Luo, L., & Cai, W. (2024). Automatic Guidance Signage Placement Through Multiobjective Evolutionary Algorithm. IEEE Transactions on Computational Social Systems. DOI: 10.1109/TCSS.2024.3359905
[49] Zhang, W., Jiang, S., Li, X., Chen, Z., Cao, G., & Mei, M. (2024). Multi-objective optimization of concrete pumping S-pipe based on DEM and NSGA-II algorithm. Powder Technology, 434, 119314. https://doi.org/10.1016/j.powtec.2023.119314
[50] Oliveira, A., Firmino, F., Cruz, P. V., de Oliveira Sampaio, J., & da Cruz, S. M. S. (2024). In Silico Evaluation and Prediction of Pesticide Supported by Reproducible Evolutionary Workflows. In Optimization Under Uncertainty in Sustainable Agriculture and Agrifood Industry (pp. 135-159). Cham: Springer International Publishing. https://doi.org/10.1016/j.jocs.2010.04.002
[51] Allmendinger, R., Shavarani, S. M., & López-Ibáñez, M. (2023). Detecting Hidden and Irrelevant Objectives in Interactive Multi-Objective Optimization. IEEE Transactions on Evolutionary Computation. DOI: 10.1109/TEVC.2023.3269348
[52] Gargari, F. J., & Pourjavad, E. (2020, December). Supplier Selection and Order Allocation Under Disruption: Multi-Objective Evolutionary Algorithms. In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 868-872). IEEE. DOI: 10.1109/IEEM45057.2020.9309949
[53] Mishra, S., Singh, S. S., Mishra, S., & Biswas, B. (2024). Multi-objective based unbiased community identification in dynamic social networks. Computer Communications, 214, 18-32. https://doi.org/10.1016/j.comcom.2023.11.021
[54] Kalita, K., Ramesh, J. V. N., Cepova, L., Pandya, S. B., Jangir, P., & Abualigah, L. (2024). Multi-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems. Scientific reports, 14(1), 1816. https://doi.org/10.1038/s41598-024-52083-7
[55] Cai, X., Wu, L., Zhao, T., Wu, D., Zhang, W., & Chen, J. (2024). Dynamic adaptive multi-objective optimization algorithm based on type detection. Information Sciences, 654, 119867. https://doi.org/10.1016/j.ins.2023.119867
[56] Usman, S., & Lu, C. (2024). Job-shop scheduling with limited flexible workers considering ergonomic factors using an improved multi-objective discrete Jaya algorithm. Computers & Operations Research, 162, 106456. https://doi.org/10.1016/j.cor.2023.106456
[57]. Jiang, C., Xie, J., & Ye, T. (2024). Network structure guided multi-objective optimization approach for key entity identification. Applied Soft Computing, 151, 111115. https://doi.org/10.1016/j.asoc.2023.111115
[58] Mohamadi, N., Niaki, S. T. A., Taher, M., & Shavandi, A. (2024). An application of deep reinforcement learning and vendor-managed inventory in perishable supply chain management. Engineering Applications of Artificial Intelligence, 127, 107403. https://doi.org/10.1016/j.engappai.2023.107403
[59] Richey Jr, R. G., Chowdhury, S., Davis‐Sramek, B., Giannakis, M., & Dwivedi, Y. K. (2023). Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. Journal of Business Logistics, 44(4), 532-549. https://doi.org/10.1111/jbl.12364
[60] Yusriza, F. A., Abdul Rahman, N. A., Jraisat, L., & Upadhyay, A. (2023). Airline catering supply chain performance during pandemic disruption: a Bayesian network modelling approach. International Journal of Quality & Reliability Management, 40(5), 1119-1146. https://doi.org/10.1108/IJQRM-01-2022-0027
[61] Barbhuiya, S., & Das, B. B. (2023). Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Studies in Construction Materials, e02326. https://doi.org/10.1016/j.cscm.2023.e02326
[62] Javadi Gargari, F., Sayad, M., Posht Mashhadi, S. A., Sadrnia, A., Nedjati, A., & Yousefi Golafshani, T. (2021). Five-Echelon Multiobjective Health Services Supply Chain Modeling under Disruption. Mathematical Problems in Engineering, 2021, 1-16. https://doi.org/10.1155/2021/5587392