• Home
  • iraj mahdavi
  • OpenAccess
    • List of Articles iraj mahdavi

      • Open Access Article

        1 - An integrated model of cellular manufacturing and supplier selection considering product quality
        Habib Heydari Mohammad Mahdi Paydar Iraj Mahdavi
        Today’s business environment has forced manufacturers and plants to produce high-quality products at low cost and the shortest possible delivery time. To cope with this challenge, manufacturing organizations need to optimize the manufacturing and other functions t More
        Today’s business environment has forced manufacturers and plants to produce high-quality products at low cost and the shortest possible delivery time. To cope with this challenge, manufacturing organizations need to optimize the manufacturing and other functions that are in logical association with each other. Therefore, manufacturing system design and supplier selection process are linked together as two major and interrelated decisions involved in viability of production firm. As a matter of fact, production and purchasing functions interact in the form of an organization’s overall operation and jointly determine corporate success. In this research, we tried to show the relationship between designing cellular manufacturing system (CMS) and supplier selection process by providing product quality considerations as well as the imprecise nature of some input parameters including parts demands and defects rates. A unified fuzzy mixed integer linear programming model is developed to make the interrelated cell formation and supplier selection decisions simultaneously and to obtain the advantages of this integrated approach with product quality and consequently reduction of total cost. Computational results also display the efficiency of proposed mathematical model for simultaneous consideration of cellular manufacturing design and supplier selection as compared to when these two decisions separately taken into account. Manuscript profile
      • Open Access Article

        2 - Cell forming and cell balancing of virtual cellular manufacturing systems with alternative processing routes using genetic algorithm
        Adib Hosseini Mohammad Mahdi Paydar Iraj Mahdavi Javid Jouzdani
        Cellular manufacturing (CM) is one of the most important subfields in the design of manufacturing systems and as a recently emerged field of study and practice, virtual cellular manufacturing (VCM) inherits the importance from CM. One type of VCM problems is VCM with al More
        Cellular manufacturing (CM) is one of the most important subfields in the design of manufacturing systems and as a recently emerged field of study and practice, virtual cellular manufacturing (VCM) inherits the importance from CM. One type of VCM problems is VCM with alternative processing routes from which the route for processing each part should be selected. In this research, a bi-objective mathematical programming model is designed in order to obtain optimal routing of parts, the layout of machines and the assignment of cells to locations and to minimize the production costs and to balance the cell loads. The proposed mathematical model is solved by multi-choice goal programming (MCGP). Since CM models are NP-Hard, a genetic algorithm (GA) is utilized to solve the model for large-sized problem instances and the results obtained from both methods are compared. Finally, a conclusion is made and some visions for future works are offered.Cellular manufacturing (CM) is one of the most important subfields in the design of manufacturing systems and as a recently emerged field of study and practice, virtual cellular manufacturing (VCM) inherits the importance from CM. One type of VCM problems is VCM with alternative processing routes from which the route for processing each part should be selected. In this research, a bi-objective mathematical programming model is designed in order to obtain optimal routing of parts, the layout of machines and the assignment of cells to locations and to minimize the production costs and to balance the cell loads. The proposed mathematical model is solved by multi-choice goal programming (MCGP). Since CM models are NP-Hard, a genetic algorithm (GA) is utilized to solve the model for large-sized problem instances and the results obtained from both methods are compared. Finally, a conclusion is made and some visions for future works are offered. Manuscript profile
      • Open Access Article

        3 - Designing an integrated production/distribution and inventory planning model of fixed-life perishable products
        Javad Rezaeian keyvan Shokoufi Sepide Haghayegh Iraj Mahdavi
        This paper aims to investigate the integrated production/distribution and inventory planning for perishable products with fixed life time in the constant condition of storage throughout a two-echelon supply chain by integrating producers and distributors. This problem a More
        This paper aims to investigate the integrated production/distribution and inventory planning for perishable products with fixed life time in the constant condition of storage throughout a two-echelon supply chain by integrating producers and distributors. This problem arises from real environment in which multi-plant with multi-function lines produce multi-perishable products with fixed life time into a lot sizing to be shipped with multi-vehicle to multi-distribution-center to minimize multi-objective such as setup costs between products, holding costs, shortage costs, spoilage costs, transportation costs and production costs. There are many investigations which have been devoted on production/distribution planning area with different assumption. However, this research aims to extend this planning by integrating an inventory system with it in which for each distribution center, net inventory, shortage, FIFO system and spoilage of items are calculated. A mixed integer non-linear programming model (MINLP) is developed for the considered problem. Furthermore, a genetic algorithm (GA) and a simulated annealing (SA) algorithm are proposed to solve the model for real size applications. Also, Taguchi method is applied to optimize parameters of the algorithms. Computational characteristics of the proposed algorithms are examined and tested using t-tests at the 95% confidence level to identify the most effective meta-heuristic algorithm in term of relative percentage deviation (RPD). Finally, Computational results show that the GA outperforms SA although the computation time of SA is smaller than the GA. Manuscript profile
      • Open Access Article

        4 - A Public Bicycle Sharing System Considering Renting and Middle Stations
        Behzad Maleki Vishkaei Iraj Mahdavi Nezam Mahdavi-Amiri Esmaile Khorram
        Recently, public bicycle sharing system (PBSS) has become one of the most favorite urban transportation systems that can help governments to decrease environmental problems such as pollution and traffic. This paper studies a sharing system that includes two types of sta More
        Recently, public bicycle sharing system (PBSS) has become one of the most favorite urban transportation systems that can help governments to decrease environmental problems such as pollution and traffic. This paper studies a sharing system that includes two types of stations. The first category contains stations that users can rent or return back bicycles and each bicycle can be rented by any new user who arrives to the stations. The second group is the stations which are near shopping centers, historical and other places that users and tourists can stop and visit them. These stations are used only for parking the rented bicycles for a period of time and after that, the users must ride their bicycles and turn them back to their destination stations. After discussing the network of the model under the closed Jackson network, the Mean Value Analysis (MVA) method will be used to calculate the mean queue of each station and analyzing the proposed model. Manuscript profile
      • Open Access Article

        5 - The Preemptive Just-in-time Scheduling Problem in a Flow Shop Scheduling System
        Javad Rezaeian Sadegh Hosseini-Kia Iraj Mahdavi
        Flow shop scheduling problem has a wide application in the manufacturing and has attracted much attention in academic fields. From other point, on time delivery of products and services is a major necessity of companies’ todays; early and tardy delivery times will More
        Flow shop scheduling problem has a wide application in the manufacturing and has attracted much attention in academic fields. From other point, on time delivery of products and services is a major necessity of companies’ todays; early and tardy delivery times will result additional cost such as holding or penalty costs. In this paper, just-in-time (JIT) flow shop scheduling problem with preemption and machine idle time assumptions is considered in which objective function is minimizing the sum of weighted earliness and tardiness. A new non-linear mathematical model is formulated for this problem and due to high complexity of the problem meta-heuristic approaches have been applied to solve the problem for finding optimal solution. The parameters of algorithms are set by Taguchi method. Each parameter is tested in three levels. By implementation of many problems with different sizes these levels are determined .The proposed model is solved by three meta-heuristic algorithms: genetic algorithm (GA), imperialist competitive algorithm (ICA) and hybrid of GA and ICA. To evaluate the performance of the proposed algorithms many test problems have been designed. The Computational results indicate the superiority of the performance of hybrid approach than GA and ICA in finding thebest solution in reasonable computational time. Manuscript profile