• Home
  • Eshetie Berhan
  • OpenAccess
    • List of Articles Eshetie Berhan

      • Open Access Article

        1 - STOCHASTIC VEHICLE ROUTING PROBLEMS WITH SIMULTANEOUS PICKUP AND DELIVERY SERVICES
        Eshetie Berhan
        The problem of designing a set of routes with minimum cost to serve a collection of customers with a fleet of vehicles is a fundamental challenge when the number of customers to be dropped or picked up is not known during the planning horizon. The purpose of this paper More
        The problem of designing a set of routes with minimum cost to serve a collection of customers with a fleet of vehicles is a fundamental challenge when the number of customers to be dropped or picked up is not known during the planning horizon. The purpose of this paper is to develop a vehicle routing Problem (VRP) model that addresses stochastic simultaneous pickup and delivery in the urban public transport systems of Addis Ababa city Bus Enterprise, in Ethiopia. To this effect, a mathematical model is developed and fitted with real data collected from Anbessa City Bus Service Enterprise (ACBSE) and solved using Clark-Wright saving algorithm. The form-to-distance is computed from the data collected from Google Earth and the passenger data from the ACBSE. The findings of the study show that, the model is feasible and showed an improvement as compared to the current performances of the enterprise. It has shown that, an improvement on the current number of routes (number of buses used) and the total kilometer covered. The average performances of the model show that on average 6.48 routes are required to serve passenger demands of 271 and on average the simulation run was performed with 0.40 seconds of CPU time. During this instance, the average distance traveled by the vehicles in a single trip is 552.92kms. Manuscript profile
      • Open Access Article

        2 - Service Performance Improvement Model: The Case of Teklehaymanot General Hospital
        Eshetie Berhan Selam Yibeltal Sisay Geremew
        In service sector, there are challenges in keeping an optimum balance between customers' demand and availability of resources. This problem is going to be more intense in the health sector due to the fact that both arrival and service times are random. Therefore, design More
        In service sector, there are challenges in keeping an optimum balance between customers' demand and availability of resources. This problem is going to be more intense in the health sector due to the fact that both arrival and service times are random. Therefore, designing the service environment by keeping the optimum balance between customers’ demand and available resources is becoming a series problem in Teklehaymanot General Hospital. This paper tries to develop a model that investigates the performances of Teklehaymanot General Hospital and determines the optimum number of specialist doctors based on their respective workload. To address this objective, the study develops a model using Arena Simulation Software that considers the real working environment and scenario of Teklehaymanot General Hospital. For the purpose of this research, three years’ secondary data that include the type of services and number of specialized doctors under each service channel are collected from the hospital records and fitted to the model. The findings of the study show that there are unbalanced distributions on the daily workload among specialist doctors and extended long waiting time of patients in Teklehaymanot General Hospital. It reveals that specialist doctors who are working in pre-breast center, Hematology oncology imaging, neurology, obstetrics & gynecology, ophthalmology, pulmonology, urgent care, urology and women’s imaging are relatively overloaded, whereas those who are working in ENT Allergy Audiology, gastroenterology, Nuclear Medicine, orthopedics, physical therapy, and surgery are relatively underloaded. Moreover, from the scenario analysis, the result shows thatadditional specialized doctors in the fifteen areas are required so as to reduce the waiting time of patients by 54.41%. Therefore, the hospital is recommended to have a balanced workload distribution among specialist doctors and increase the number of specialist doctors by one or two in the fifteen service areas. Manuscript profile