طراحی نانو بیوسنسور پلیمر قالب ملکولی مبتنی بر پتانسیومتری جهت تشخیص اگزوتوکسین باکتری استافیلوکوکوس ارئوس
محورهای موضوعی : میکروبیولوژی مواد غذاییحامد اهری 1 , ودود رضویلر 2 , بهروز اکبری آدرگانی 3 , عباسعلی مطلبی 4
1 - مربی دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، دانشکده علوم و مهندسی صنایع غذایی، تهران، ایران
2 - استاد دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، دانشکده علوم تخصصی دامپزشکی، تهران، ایران
3 - استاد دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، دانشکده علوم تخصصی دامپزشکی، تهران، ایران
4 - دانشیار مرکز تحقیقات آزمایشگاهی غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران
کلید واژه: اگزوتوکسین استافیلوکوکوس ارئوس, سنسور پلیمرقالب ملکولی, نانوحسگر,
چکیده مقاله :
مقدمه:باتوجه به رشد روزافزون جمعیت و صنعتی شدن سیرتکاملی حیات بشر، تشخیص سموم تولید شده در مواد غذائی با استفاده از روشهای سنتی دشوار بوده چرا که از لحاظ زمانی، مدت بررسی کیفیت طولانی شده و مقرون به صرفه نبوده و حتی در بسیاری از موارد دقت روشهای کاربردی همچون محیط کشت باکتریائی و غیره دارای خطای آزمایشگاهی میباشد، لذا با پیشرفت تکنولوژی نانو، طراحی سنسورهای انتخابی و هوشمند، تحولی بزرگ در صنعت کنترل کیفی مواد غذائی محسوب میشود که هم در زمانی کوتاه و هم با دقتی بسیار بالا می تواند تشخیص توکسین باکتریها را انجام دهد. مواد و روشها: در این تحقیق از مونومرهای متااکریلیک اسید برای تهیه قالب ملکولی و تهیه پلیمر استفاده گردیده شدکه با پیوند کوالانسی بین مونومرهای متااکریلیک اسید (MAA) پلیمری سفید تشکیل شده، همچنین پیوند هیدروژنی بین اسید آمینه اگزوتوکسین و متااکریلیک اسید بوجود میآید که عامل جذب انتخابی آن خواهد بود. یافتهها: نتایج بدست آمده حاکی ا زآن است که تا رقت 3-10 مولار از رقت توکسین باکتری مذکور توسط سنسور پلیمر قالب ملکولی قابل تشخیص میباشد و رقتهای رقیقتر قابل ردیابی نمیباشد، همچنین حساسیت سنسور تا 60 روز مورد آزمون قرارگرفت که سنسور مبتنی بر پلیمر قالب ملکولی تا 28 روز مورد تائید بوده و بعد از زمان مذکور رو به کاهش قرار گرفت. نتیجهگیری: اگرچه حساسیت تکنیک پایئن بوده ولی دقت مراحل عالی بوده برنامهریزی میشود تا جهت افزایش حساسیت تست روش دیگری طراحی گردد.
Introduction: Considering the ever increasing population and industrialization of the developmental trend of humankind's life, one is hardly able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the quality survey for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from laboratories errors. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest transformation of the quality control of food products that in few minutes time, and with a very high precision one can identify the toxin level of bacteria. In the present research, the use of the molecular framework polymer of bacterial toxin as the modifier for the improvement of electrochemical properties of PVC film electrode in order to measure the exotoxin is experienced.Materials and Methods: In this technique, the production of molecular framework and polymer is done using meta acrylic acid monomers, that are formed via covalence connection between meta acrylic acid monomers (MAA) of white polymer. Here also hydrogenic connection between exotoxin amino acid and meta MAA is made that would function as the selective absorption for that.Result: The results indicate that the molecular framework polymer sensor is capable of detecting up to the density of 10-3. Additionally, the sensitivity of the sensors were examined up to 60 days and was confirmed for 28 days and then started to decrease.Conclusion: Although the sensitivity of the technique was low but detection precision was perfect. To increase the sensitivity of the test, it is planned to design another technique to increase the sensitivity of the test.
Anatolii, S. A. (1980). Increasing the sensitivity of mice to substances of microbial origin following administration of staphylococcal exotoxin, Zh Mikrobiol Epidemiol Immunobiol, 112-113.
Babu, E., Mareeswaran, P. M. & Rajagopal, S. (2013). Highly sensitive optical biosensor for thrombin based on structure switching aptamer-luminescent silica nanoparticles, J Fluoresc, 23, 137-146.
Belokrylov, G. A. (1970). The effect of thyroidectomy on the resistance of adult rats to Escherichia coli endotoxin and staphylococcal exotoxin, Zh Mikrobiol Epidemiol Immunobiol, 47, 72-74.
Chilton, M., Black, M. M., Berkowitz, C., Casey, P. H., Cook, J., Cutts, D., Jacobs, R. R., Heeren, T., Decuba, S. E., Coleman, S., Meyers, A. & Frank, D. A. (2009). Food insecurity and risk of poor health among US-born children of immigrants, Am J Public Health, 99, 556-562.
Ferro, Y., Perullini, M., Jobbagy, M., Bilmes, S. A. & Durrieu, C. (2012). Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels, Sensors (Basel), 12, 16879-16891.
Hamrin, P. & Hoeft, B. (2012). Quality control throughout the production process of infant food, Ann Nutr Metab, 60, 208-210.
Li, Y., Zhang, L., Li, M., Pan, Z. & Li, D. (2012). A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode, Chem Cent J, 6, 103.
Marques, P. R., Lermo, A., Campoy, S., Yamanaka, H., Barbe, J., Alegret, S. & Pividori, M. I. (2009). Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety, Anal Chem, 81, 1332-1339.
Mashhadizadeh, M. H. & Talemi, R. P. (2011). Used gold nano-particles as an on/off switch for response of a potentiometric sensor to Al(III) or Cu(II) metal ions,Anal Chim Acta, 692, 109-115.
Murakami, A. (2013). Modulation of protein quality control systems by food phytochemicals, J Clin Biochem Nutr, 52, 215-227.
Murphy-Perez, E., Arya, S. K. & Bhansali, S. (2011). Vapor-liquid-solid grown silica nanowire based electrochemical glucose biosensor, Analyst, 136, 1686-1689.
Ravetz, J. R., Healey, P. & Rayner, S. (2013). GM food: Rat reality show blurs quality control, Nature, 493, 304.
Santana Porben, S. (2012). Quality control an assessment system. Its location within a program for food, nutrition and metabolic intervention, Nutr Hosp, 27, 894-907.
Shen, J., Yang, X., Zhu, Y., Kang, H., Cao, H. & Li, C. (2012). Gold-coated silica-fiber hybrid materials for application in a novel hydrogen peroxide biosensor,Biosens Bioelectron, 34, 132-136.
Shimomura, T., Sumiya, T., Ono, M., Ito, T. & Hanaoka, T. A. (2012). Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer, Anal Chim Acta, 714, 114-120.
Wu, S., Zhang, L., Qi, L., Tao, S., Lan, X., Liu, Z. & Meng, C. (2011). Ultra-sensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection, Biosens Bioelectron, 26, 2864-2869.
Xu, G., Xia, J. H., Zhou, H., Yu, C. Z., Zhang, Y., Zuo, K. J., Shi, J. B. & Li, H. B. (2009). Interleukin-6 is essential for Staphylococcal exotoxin B-induced T regulatory cell insufficiency in nasal polyps, Clin Exp Allergy, 39, 829-837.