بهینه سازی ترکیب محیط صنعتی کشت زانتاموناس کمپستریس (campestris Xanthomonas) به منظور افزایش بازده تولید زانتان به شیوه سطح پاسخ
محورهای موضوعی : میکروبیولوژی مواد غذاییزهرا فرقانی 1 , مرضیه موسوی نسب 2 * , سارا خشنودی نیا 3
1 - دانشآموختهکارشناسی ارشد بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران
2 - استاد بخش علوم و صنایع غذایی و رئیس گروه فرآوری آبزیان، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران
3 - دانشجوی دکترای بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران
کلید واژه: بهینهسازی محیط کشت, شیوه سطح پاسخ, صمغ زانتان, طرح فاکتوریل جزئی,
چکیده مقاله :
مقدمه: صمغ زانتان به دلیل رفتار سودوپلاستیک، نسبت به صمغهای نیوتنی احساس صمغی کمتری در دهان ایجاد کرده و به عنوان قوامدهنده و تعلیقکننده کاربرد زیادی در صنعت غذا دارد. زانتان صمغی باکتریایی است و فرایند تولید آن بهشدت تحت تأثیر ترکیب محیط کشت قرار دارد. هدف از این مطالعه بهینهسازی محیط کشت صنعتی برای رسیدن به حداکثر بازده صمغ زانتان است. مواد و روش ها: تولید صمع زانتان توسط باکتری زانتاموناس کمپستریس PTCC-1473 و در محیطهای کشت مختلف در بیوراکتور همزندار باکنترل شرایط pH و اکسیژن محلول انجام شد. در این پژوهش از طرح فاکتوریل جزئی برای شناسایی فاکتورهای مؤثر بر تولید صمع زانتان توسط باکتری مذکور استفاده شد. شیوه سطح پاسخ و طرح مرکزی نیز برای برآورد اثر ساده و متقابل چهار متغیر معنیدار (گلوکز، ساکارز، عصاره مخمر و سولفات آمونیوم) بر تولید توده سلولی و صمغ زانتان در محیط کشت مایع استفاده شد. یافتهها: نتایج نشان داد هر دو منبع کربن و نیتروژن تأثیر زیادی بر تولید زانتان دارند، اما منبع کربنی و به ویژه گلوکز بیشتر از منابع نیتروژنی در رشد سلولی و تولید صمغ زانتان مؤثر است. نرمافزار، سطح بهینه محیط کشت برای تولید صمغ زانتان 75/53 گلوکز (گرم/لیتر)، 8/27 ساکارز (گرم/لیتر)، 8/7 عصاره مخمر (گرم/لیتر) و 6/5 سولفات آمونیوم (گرم/لیتر) برآورد کرد، در این محیط کشت تولید 43/12 گرم/لیتر پیشبینی شد. استفاده از محیط کشت بهینه شده در بیوراکتور 5 لیتری بعد از 36 ساعت تخمیر باعث تولید 44/0±26/12 زانتان شد، که مطابقت بالایی با میزان پیشبینی شده داشت. نتیجهگیری: محیط کشت بهینه شده در این پژوهش میتواند توانایی بالایی در بهبود بازدهی و متعاقبا تولید مقرون به صرفهتر صمغ زانتان داشته باشد.
Introduction: Xanthan gum shows pseudoplastic behavior in solutions, and has less ‘gummy’mouth feel than Newtonian ones. Therefore, xanthan gum has major application in foodindustry as a thickening and suspending agent. Xanthan gum is a bacterial gum and theproduction process is largely affected by the culture medium compositions. The aim of thisstudy was to optimize an economic industrial medium for maximum yield of xanthan gum.Materials and Methods: Xanthan gum production by Xanthomonas campestris ATCC 1395using different culture medium was carried out in a stirred bioreactor with controlled pH anddissolved oxygen. A fractional factorial design was applied to identify the effective factors onxanthan gum production. Central composite design and response surface methodology wereused to evaluate the individual and interactive effects of four major significant variables(glucose, sucrose, yeast extracts and (NH4)2SO4) on biomass and xanthan gum production insubmerged culture medium composition.Results: The results indicated that both carbon and nitrogen sources had strong positiveeffects on xanthan gum production, but the carbon source, especially glucose, was determinedto be more significant factor than nitrogen source in growth cell and production of gum. theoptimum culture medium for producing xanthan gum was composed of 53.75 (g/L) glucose,27.8 (g/L) sucrose, 7.8 yeast-extract (g/L) and 5.6 (NH4)2SO4 (g/L). After 36 hours under theoptimized culture medium in 5-L bioreactor the xanthan gum yield reached about 12.26±0.44g/L, which was found to be in good agreement with the predicated value (12.43 g/L).Conclusion: The optimized culture medium studied here can be a good candidate to improvethe yield and consequently be more cost-effective in the production of xanthan gum.
نیکنژاد، و.، اسدالهی، م. ع.، بیریا، د. و زمانی، ا. (1392). بهینهسازی تولید میکروبی صمغ زانتان توسط زانتاموناس کمپستریس با استفاده از نشاسته هیدرولیز شده. مجله زیستشناسی میکروارگانیسمها، سال دوم، شماره 5، صفحات 10-1.
Amid, B. T. & Mirhosseini, H. (2012). Optimisation of aqueous extraction of gum from durian (Durio zibethinus) seed: A potential, low cost source of hydrocolloid. Food Chemistry, 132, 1258-1268.
Anderson, M. J. & Whitcomb, P. J. (2005). RSM simplified: optimizing processes using response surface methods for design of experiments, Productivity Press.
Cacik, F., Dondo, R. G. & Marqués, D. (2001). Optimal control of a batch bioreactor for the production of xanthan gum. Computers & Chemical Engineering, 25, 409-418.
Davidson, I. (1978). Production of polysaccharide by Xanthomonas campestris in El Enshasy, H., Then, C., Othman, N., Al Homosany, H., Sabry, M., Sarmidi, M. R. & Aziz, R. (2013). Enhanced xanthan production process in shake flasks and pilot scale bioreactors using industrial semidefined medium. African Journal of Biotechnology, 10, 1029-1038.
Esgalhado, M. E., Roseiro, J. C. & Collaço, M. A. (1995). Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochemistry, 30, 667-671.
Funahashi, H., Yoshida, T. & Taguchi, H. (1987). Effect of glucose concentrations on xanthan gum production by xanthomonas campestris. Journal of fermentation technology,
65, 603-606.
Gilani, S., Heydarzadeh, H., Mokhtarian, N., Alemian, A. & Kolaei, M. (2011). Effect of preparation conditions on xanthan gum production and rheological behavior using cheese whey by Xanthomonas campestris. Aust. J. Basic Appl Sci, 5, 855-9.
Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A. & Skaracis, G. N. (2003). Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochemistry, 39, 249-256.
Leela, J. K. & Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 23, 687-689.
Li, C., Bai, J., Cai, Z. & Ouyang, F. (2002). Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 93, 27-34.
Mesomo, M., Silva, M. F., Boni, G., Padilha, F. F., Mazutti, M., Mossi, A., De Oliveira, D., Cansian, R. L., DI Luccio, M. & Treichel, H. (2009). Xanthan gum produced by Xanthomonas campestris from cheese whey: production optimisation and rheological characterisation. Journal of the Science of Food and Agriculture, 89, 2440-2445.
Moreira, A., Vendruscolo, J., Gil-Turnes, C. & Vendruscolo, C. (2001). Screening among 18 novel strains of Xanthomonas campestris pv pruni. Food hydrocolloids, 15, 469-474.
Moshaf, S., Hamidi-Esfahani, Z. & Azizi, M. (2011). Optimization of conditions for xanthan gum production from waste date in submerged fermantation. World Acad Sci Eng Technol, 57, 521-524.
Moshaf, S., Hamidi-Esfahani, Z. & Azizi, M. (2014). Statistical Optimization of Xanthan Gum Production and Influence of Airflow Rates in Lab-scale Fermentor. Applied Food Biotechnology, 1, 17-24.
Murugesan, A., Dhevahi, B., Gowdhaman, D., BALA, A. & SATHESH, P. (2012). Production of xanthan employing Xanthomonas campestris using sugarcane molasses. Am J Environ Eng, 2, 31-34.
Niknezhad, S. V., Asadollahi, M. A., Zamani, A., Biria, D. & Doostmohammadi, M. (2015). Optimization of xanthan gum production using cheese whey and response surface methodology. Food Science and Biotechnology, 24, 453-460.
Palaniraj, A. & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106, 1-12.
Papagianni, M., Psomas, S., Batsilas, L., Paras, S., Kyriakidis, D. & Liakopoulou-Kyriakides, M. (2001). Xanthan production by Xanthomonas campestris in batch cultures. Process Biochemistry, 37, 73-80.
Psomas, S., Liakopoulou-Kyriakides, M. & Kyriakidis, D. (2007). Optimization study of xanthan gum production using response surface methodology. Biochemical Engineering Journal, 35, 273-280.
Salah, R. B., Chaari, K., Besbes, S., Ktari, N., Blecker, C., Deroanne, C. & Attia, H. (2010). Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chemistry, 121, 627-633.
Umashankar, H., Annadurai, G., Chellapandian, M. & Krishnan, M. (1996). Influence of nutrients on cell growth and xanthan production by Xanthomonas campestris. Bioprocess Engineering, 14, 307-309.
Zhang, J., Dong, Y.-C., Fan, L.-L., Jiao, Z.-H. & Chen, Q.-H. (2015). Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydrate polymers, 115, 694-700.