بررسی اثر پلاسمای سرد بر جوانه زنی بذر نخود و تغییرات رنگ آن با استفاده از مدل فازی عصبی
محورهای موضوعی : تغذیهمحسن فریدونی 1 , حسین حاجی آقاعلیزاده 2 *
1 - گروه بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
2 - گروه بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
کلید واژه: مدل سازی, پلاسمای سرد, رنگ, جوانه زنی, نخود,
چکیده مقاله :
مقدمه: امروزه فنآوری های مختلفی در حوزه کشاورزی مورد استفاده قرار می گیرد. فناوری پلاسما یکی از روش هایی است که می تواند جوانه زنی را بدون صدمه جانبی به بذر بهبود بخشد. در این مقاله، هدف بررسی تأثیر پلاسمای سرد بر پایه تخلیه کرونا بر جوانه زنی ارقام نخود عادل، منصور و آزاد است. مواد و روش ها: نمونه های پیش تیمار با پلاسمای سرد به مدت 30 و 60 ثانیه به همراه نمونه های شاهد در شرایط یکسان برای جوانه زنی و ارزیابی تغییرات رنگ مورد بررسی قرار گرفتند. یافته ها: نتایج نشان داد بذرهای ارقام عادل و آزاد در تیماردهی 30 ثانیه و رقم منصور در تیماردهی 60 ثانیه با پلاسمای سرد، دارای طول ریشه بیشتری نسبت به نمونه های شاهد بودند. پس از تجزیه و تحلیل آماری، مشخص شد که طول ریشه در شرایط یکسان، در مدت زمان های تیماردهی با پلاسمای سرد، دارای اختلاف معنی داری در سطح 5% نسبت به شاهد می باشد. از طرفی با بررسی مؤلفه های شاخص رنگ در نمونه های مورد آزمایش، تغییر معنی داری در نمونه ها مشاهده نگردید. بیشترین تغییرات در نسبت شاخص اختلاف رنگ در نمونه های رقم عادل دارای مواجهه 60 ثانیه با پلاسمای سرد نسبت به نمونه های دارای 30 ثانیه مواجهه به میزان 1/48% محاسبه گردید. همچنین برای مشاهده تغییرات رنگ نمونه ها در اثر پلاسما، مدل درجه سوم در محیط فازی عصبی در 8 ناحیه طراحی گردید که تغییرات جزیی رنگ را پس از یادگیری، با خطای کمتر از 0/01 نمایش داد.نتیجه گیری: نتایج نشان داد استفاده از تیمار پلاسمای سرد می تواند بدون ایجاد عوارض جانبی بر جوانه زنی و بهبود رشد اولیه بذر نخود مؤثر باشد.
Introduction: Today, various technologies are used in the field of agriculture. Plasma technology is one of methods that can improve germination without harming the seeds. In this paper, the aim is to investigate the effect of cold plasma based on corona discharge on germination of Adel, Mansur and Azad chickpea varieties.Results: The results showed that the seeds of Adel and Azad varieties in 30 seconds cold plasma treatment and Mansour variety in 60-seconds cold plasma treatment, had longer root length than the control samples. After statistical analysis, it was found that root length under the same conditions, during cold plasma treatment periods, had a significant difference at the level of 5% compared to the control. On the other hand, by examining the components of color index in the tested samples, no significant change was observed in the samples. The most changes in the ratio of color difference index in samples of Adel variety with 60 seconds of exposure to cold plasma compared to samples with 30 seconds of exposure were calculated to be 1.48%. Also, to observe the color changes of the samples due to plasma, a third degree model was designed in a neural fuzzy environment in 8 regions, which showed minor color changes after learning, with an error of less than 0.01. Conclusion: The results showed that the use of cold plasma treatment can be effective on germination and improve the initial growth of chickpea seeds without causing side effects.
Alemu, A., Feyissa, T., Tuberosa, R., Maccaferri, M., Sciara, G., Letta, T. & Abeyo, B. )2020(. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal, 8(5), 757-768.
Banaschik, R., Burchhardt, G., Zocher, K., Hammerschmidt, S., Kolb, J.F. & Weltmann, K.D. )2016(. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism. Bioelectrochemistry, 112, 83-90.
Chaple, S., Sarangapani, C., Jones, J., Carey, E., Causeret, L., Genson, A., Duffy, B. &Bourke, P. )2020(. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innovative Food Science & Emerging Technologies, 66, 102529.
Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M.A. & Vázquez-Odériz, M.L. )2012(. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria× ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23-30.
Gonzalez, R.C. &Woods, R.E. )2002(. Digital image processing.
Jian, F., Sun, K., Chelladurai, V., Jayas, D.S. and White, N.D. )2014(. Quality changes in high and low oil content canola during storage: Part II–Mathematical models to predict germination. Journal of stored products research, 59, 328-337.
Khamsen, N., Akkarachanchainon, A., Fookiat, K., Srisala, J., Chomchuen, S., Kanokbannakorn, W. & Srisonphan, S. )2016(. Atmospheric Cold Plasma via Fringe Field Enhanced Corona Discharge on Single Dielectric Barrier for Large-volume Applications. Procedia Computer Science, 86, 321-324.
Kuwahara, T., Kuroki, T., Yoshida, K., Saeki, N. & Okubo, M. )2012(. Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge. Thin Solid Films, 523, 2-5.
Porto, C.L., Sergio, L., Boari, F., Logrieco, A.F. & Cantore, V.) 2019(. Cold plasma pretreatment improves the germination of wild asparagus (Asparagus acutifolius L.) seeds. Scientia Horticulturae, 256, 108554.
Mendoza, F., Dejmek, P. and Aguilera, J.M. )2006(. Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41(3), 285-295.
Misra, N.N., Schlüter, O. and Cullen, P.J. )2016(. Plasma in food and agriculture. Cold plasma in food and agriculture (pp. 1-16). Academic Press.
Pizá, M.C.P., Prevosto, L., Zilli, C., Cejas, E., Kelly, H. & Balestrasse, K. )2018(. Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innovative Food Science & Emerging Technologies, 49, 82-91.
Rawlins, J.K., Roundy, B.A., Egget, D. & Cline, N. )2012(. Predicting germination in semi-arid wildland seedbeds II. Field validation of wet thermal-time models. Environmental and Experimental Botany, 76, 68-73.
Sahlin, E., Savage, G.P. & Lister, C.E. )2004(. Investigation of the antioxidant properties of tomatoes after processing. Journal of Food composition and Analysis, 17(5), 635-647.
Schwinghamer, T., Souleimanov, A., Dutilleul, P. & Smith, D. )2015(. The plant growth regulator lipo-chitooligosaccharide (LCO) enhances the germination of canola (Brassica napus [L.]). Journal of Plant Growth Regulation, 34(1), 183-195.
Takahashi, K., Saito, Y., Oikawa, R., Okumura, T., Takaki, K. & Fujio, T. )2018(. Development of automatically controlled corona plasma system for inactivation of pathogen in hydroponic cultivation medium of tomato. Journal of Electrostatics, 91, 61-69.
Wang, X., Wang, Z., Zhuang, H., Nasiru, M.M., Yuan, Y., Zhang, J. & Yan, W. )2021(. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Science, 176, 108456.
Zhou, Y.H., Vidyarthi, S.K., Zhong, C.S., Zheng, Z.A., An, Y., Wang, J., Wei, Q. & Xiao, H.W., 2020. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT- Food Science and Technology, 134, p.110173.
_||_
Alemu, A., Feyissa, T., Tuberosa, R., Maccaferri, M., Sciara, G., Letta, T. & Abeyo, B. )2020(. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal, 8(5), 757-768.
Banaschik, R., Burchhardt, G., Zocher, K., Hammerschmidt, S., Kolb, J.F. & Weltmann, K.D. )2016(. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism. Bioelectrochemistry, 112, 83-90.
Chaple, S., Sarangapani, C., Jones, J., Carey, E., Causeret, L., Genson, A., Duffy, B. &Bourke, P. )2020(. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innovative Food Science & Emerging Technologies, 66, 102529.
Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M.A. & Vázquez-Odériz, M.L. )2012(. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria× ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23-30.
Gonzalez, R.C. &Woods, R.E. )2002(. Digital image processing.
Jian, F., Sun, K., Chelladurai, V., Jayas, D.S. and White, N.D. )2014(. Quality changes in high and low oil content canola during storage: Part II–Mathematical models to predict germination. Journal of stored products research, 59, 328-337.
Khamsen, N., Akkarachanchainon, A., Fookiat, K., Srisala, J., Chomchuen, S., Kanokbannakorn, W. & Srisonphan, S. )2016(. Atmospheric Cold Plasma via Fringe Field Enhanced Corona Discharge on Single Dielectric Barrier for Large-volume Applications. Procedia Computer Science, 86, 321-324.
Kuwahara, T., Kuroki, T., Yoshida, K., Saeki, N. & Okubo, M. )2012(. Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge. Thin Solid Films, 523, 2-5.
Porto, C.L., Sergio, L., Boari, F., Logrieco, A.F. & Cantore, V.) 2019(. Cold plasma pretreatment improves the germination of wild asparagus (Asparagus acutifolius L.) seeds. Scientia Horticulturae, 256, 108554.
Mendoza, F., Dejmek, P. and Aguilera, J.M. )2006(. Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41(3), 285-295.
Misra, N.N., Schlüter, O. and Cullen, P.J. )2016(. Plasma in food and agriculture. Cold plasma in food and agriculture (pp. 1-16). Academic Press.
Pizá, M.C.P., Prevosto, L., Zilli, C., Cejas, E., Kelly, H. & Balestrasse, K. )2018(. Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innovative Food Science & Emerging Technologies, 49, 82-91.
Rawlins, J.K., Roundy, B.A., Egget, D. & Cline, N. )2012(. Predicting germination in semi-arid wildland seedbeds II. Field validation of wet thermal-time models. Environmental and Experimental Botany, 76, 68-73.
Sahlin, E., Savage, G.P. & Lister, C.E. )2004(. Investigation of the antioxidant properties of tomatoes after processing. Journal of Food composition and Analysis, 17(5), 635-647.
Schwinghamer, T., Souleimanov, A., Dutilleul, P. & Smith, D. )2015(. The plant growth regulator lipo-chitooligosaccharide (LCO) enhances the germination of canola (Brassica napus [L.]). Journal of Plant Growth Regulation, 34(1), 183-195.
Takahashi, K., Saito, Y., Oikawa, R., Okumura, T., Takaki, K. & Fujio, T. )2018(. Development of automatically controlled corona plasma system for inactivation of pathogen in hydroponic cultivation medium of tomato. Journal of Electrostatics, 91, 61-69.
Wang, X., Wang, Z., Zhuang, H., Nasiru, M.M., Yuan, Y., Zhang, J. & Yan, W. )2021(. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Science, 176, 108456.
Zhou, Y.H., Vidyarthi, S.K., Zhong, C.S., Zheng, Z.A., An, Y., Wang, J., Wei, Q. & Xiao, H.W., 2020. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT- Food Science and Technology, 134, p.110173.