بیوسنتز نانوذرات نقره توسط عصاره مریم گلی و ارزیابی فعالیت آنتی اکسیدانی و ضد میکروبی آن ها علیه باکتری های فساد غذایی
محورهای موضوعی :
بیوتکنولوژی و میکروبیولوژی موادغذایی
بهاره حاجی رستملو
1
*
,
راحله ژیانی
2
,
شکوفه عمرانی
3
1 - 1- استادیار، گروه علوم و صنایع غذایی، واحد نیشابور ، دانشگاه آزاد اسلامی، نیشابور ، ایران
2 - 2- دانشیار، گروه شیمی، واحد نیشابور ، دانشگاه آزاد اسلامی، نیشابور، ایران
3 - 3- دانشجوی دکترای شیمی تجزیه، دانشگاه آزاد اسلامی، واحد نیشابور، باشگاه پژوهشگران جوان و نخبگان، نیشابور،
تاریخ دریافت : 1396/08/13
تاریخ پذیرش : 1397/02/08
تاریخ انتشار : 1398/04/01
کلید واژه:
فعالیت آنتی اکسیدانی,
نانوذرات نقره,
فعالیت ضد میکروبی,
گیاه مریم گلی,
بیوسنتز,
چکیده مقاله :
هدف از مطالعه حاضر سنتز زیستی نانوذرات نقره با استفاده از عصاره آبی برگ گیاه مریم گلی و بررسی فعالیت آنتی اکسیدانی و ضد میکروبی آنها می باشد. برای سنتز نانوذرات نقره، عصاره آبی گیاه تهیه و به محلول نیترات نقره با غلظت 1 میلی مولار اضافه شد. فعالیت آنتی اکسیدانی نانو ذره نقره تولید شده با استفاده از قابلیت جذب رادیکال های 1،1-دیفنیل-2-پیکریل-هیدرازیل[1](DPPH) سنجش و فعالیت ضدمیکروبی نانوذرات نیز، به روش تعیین حداقل غلظت مهارکنندگی[2](MIC)، علیه سه باکتریE. coli O157:H7 (ATCC 43895), L. monocytogenes (ATCC 7644), S. typhimurium (ATCC 35987) مورد بررسی قرار گرفت. نانوذرات نقره سنتز شده بیشترین جذب را در430 نانومتر نشان دادند و دارای شکل کروی و میانگین اندازه آنها بین 50-30 نانومتر بودند. در این مطالعه نانو ذره نقره تولید شده به عنوان مهارکننده رادیکال DPPH(IC50 =170 μM) عمل کردند. مقادیر MIC نانو ذرات نقره در برابر پاتوژن های آزمایشی در محدوده 25/6- 12/3 میکرو گرم بر میلی لیتر بود. پاتوژن monocytogenes بالاترین میزان MIC را نشان داد. نتایج حاصل نشانگر فعالیت آنتی اکسیدانی و ضدمیکروبی مناسب نانوذرات بیوسنتز شده بودند. [1].1,1-diphenyl-2-picrylhydrazyl [2].Minimum Inhibition concentration
منابع و مأخذ:
Abdelaziz, M.S., Shaheen, M.S., Elnekeety, A.A. and Abdelwahhab, M.A. 2014. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18:356-363.
Ahmed, S., Ahmad, M., Swami, B.L. and Ikram, S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7: 17–28.
Bharathi, K., Thirumurugan, V., Kavitha, M., Muruganadam, G., Ravichandran, K. and Seturaman, M. 2014. A comparative study on the green biosynthesis silver nanoparticles using dried leaves of Boerha aviadiffusa L. and Cichorium intybus L. with reference to their antimicrobial potential. World Journal of Pharmaceutical Sciences, 3:1415-1427.
Bunghez, I., Barbinta, A., Patrascu, M., Badea, N., Doncea, S., Popescu, A., et al. 2012. Antioxidant silver nanoparticles green synthesized using ornamental plants. Journal of Optoelectronics and Advanced Materials, 14:1016-1022.
Buzea, C., Pacheco, I. and Robbie, K. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4):17-71.
Dauthal, P. and Mukhopadhyay, M. 2013. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract. Journal of Nanoparticle Research, 15:1-11.
Elrafie, H.M. and Hamed, M.A. 2014. Antioxidant and anti inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5:1-11.
Ghaffari-Moghaddam, M., Hadi-Dabanlou, R., Khajeh, M., Rakhshanipour, M. and Shameli, K. 2014. Green synthesis of silver nanoparticles using plant extracts. Korean Journal of Chemical Engineering, 31(4):548–557.
Govindaraju, K., Tamilselvan, S. and Kiruthogs, G. 2010. Simgaravelu, Biogenic silver nanoparicles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides , 3:394–399.
Guzman, M., Dille, J. and Godet, S. 2012. Synthesis and antibacterial activity of silver nanoparticles against gram positive and gram negative bacteria. Nanomedicine, 8: 37-45.
Inbathamizh, L., Ponnu, T.M. and Mary, E.J. 2013. In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. Journal of Pharmacy Research , 6:32-38.
Jacob, S.J., Finub, J.S. and Narayanan, A. 2012. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and surfaces B, Biointerfaces , 91:212-214.
Jegadeeswaran, P., Shivaraj, R. and Venckatesh, R. 2012. Green synthesis of silver nanoparticles from extracts of Padina tetrastromatica leaf. Digest Journal of Nanomaterials and Biostructures, 7(3): 991 – 998.
Johnsona, A., Obota, I. and Ukponga, U. 2014. Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial antioxidant and corrosion inhibition potentials. Journal of Materials and Environmental Science, 5:899-906.
Khandelwal, N., Singh, A., Jain, D., Upadhyay, M.K. and Verma, H.N. 2010. Green synthesis of silver nanoparticles using Argimone maxicana leaf extract and evaluation of their activity, Digest Journal of Nanomaterials and Biostructures, 5: 483–489.
Kim, J.S., Kuk, E, Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1):95–101.
Kokila, T., Ramesh, P.S. and Geetha, D. 2016. Biosynthesis of AgNPs using Carica papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicology and Environmental Safety, 134: 467–473.
Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T. and Mohan, N. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and surfaces B, Biointerfaces, 76:50-56.
Logeswari, P., Silambarasan, S. and Abraham, J. 2013. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica, 20(3):1049–1054.
Mallikarjuna, K., Narasimha, G., Dillip, G.R., Praveen, B., Shreedhar, B., Lakshmi, C.S. and Raju, B.D.P. 2011. Green synthesis of silver nanoparticles using Ocimum Leaf axtract and their characterization. Digest Journal of Nanomaterials and Biostructures, 6(1):181-186.
Mittal, A.K., Kaler, A. and Banerjee, U.C. 2012. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomedicine and Engineering, 4:118-124.
Moadi, T., Ghahramanzadeh, R., Yosofi, M. and Mohammadi, F. 2014. Synthesis of silver nanoparticles using four species plant and investigation of their antimicrobial activity. Iranian Journal of Chemical Engineering, 4: 1-9.
Mohan, S.C., Sasikala, K., Anand, T., Vengaiah, P. and Krishnaraj, S. 2014. Green synthesis antimicrobial and antioxidant effects of silver nanoparticles using Canthium coromandelicum leaves extract. Research Journal of Microbiology, 9:142-150.
Murugan, K., Senthilkumar, B., Senbagam, D. and Al-Sohaibani, S. 2014. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicine, 9:2431–2438.
Nazeruddin, G., Prasad, N., Waghmare, S., Garadkar, K. and Mulla, I. 2014. Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its antimicrobial activity. Journal of Alloys and Compounds, 583:272-277.
Nithya Deva Krupa, A. and Raghavan, V. 2014. Biosynthesis of silver nanoparticles using Aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: a strategy to control microfouling. Bioinorganic Chemistry and Applications, 10:1–8.
Philip, D. and Unni, C. 2011. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E: Low-dimensional Systems and Nanostructures, 43:1318-1322.
Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. 2012. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2:574-580.
Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27: 76 -83.
Reddy, N.J., Nagoor Vali, D., Rani, M. and Rani, S.S. 2014. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and EngineeringC: Materials for Biological Applications, 34:115-122.Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and InterfaceScience, 275:496-502.
Shrififar, F., Moshafi, M. and Mansouri, S. 2007.Invitroevaluation of anti bacterial an antioxidant of the essential oil and methanol extract of endemic Zatariamultiflora boiss. Food Control, 18:800-805.
Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P. and Dash, D. 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18:103-118.
Taarit, M.B., Msaada, K., Hosni, K. and Marzouk, B. 2010. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chemistry, 119(3):951-956.
Veerasamy, R., Xin, T.Z., Gunasagaran, S., Xiang, T.F.W., Yang, E.F.C., Jeyakumar, N., et al. 2011. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15:113-120.
Venkatesan, J., Kim, S.K. and Shim, M.S. 2016. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials, 6: 235-240.
Vijayakumar, M., Priya, K., Nancy, F.T., Noorlidah, A. and Ahmed, A.B.A. 2013. Biosynthesis, characterization and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Industrial Crops and Products, 41:235-240.
Yugal, K., Mohanta, S., Sujogya, K.P., Rasu, J., Nanaocha, S., Akshaya, K.B. and Tapan, K.M. 2017. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences, 32(3):136-141.