بهينه سازي استخراج کورکومين با روش هاي خيساندن و سيال فوق بحراني دي اکسيدکربن با استفاده از روش سطح پاسخ
محورهای موضوعی : روشهای استخراج ترکیبات موثرهزهره یوسفوند 1 , جواد سرگلزایی 2 * , شادی بلوریان 3
1 - گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران
2 - گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران
3 - پژوهشکده علوم و فناوری مواد غذایی، جهاد دانشگاهی خراسان رضوی، مشهد، ایران.
کلید واژه: بهينه ¬سازي, خيساندن, سطح پاسخ, فوق بحراني, کورکومين.,
چکیده مقاله :
کورکومين رنگدانه استخراج شده از ريزوم زردچوبه (Curcuma longa L.) است که علاوه بر خاصيت رنگ دهندگي داراي خواص درماني مفيد نيز مي باشد. اين پژوهش با هدف بررسي استخراج کورکومين توسط سيال فوق بحراني کربن دي اکسيد و مقايسه نتايج حاصل از آن با روش خيساندن انجام شد. در روش کربن دي اکسيد فوق بحراني اثر دما، فشار و نسبت حلال کمکي به ماده جامد بر بازدهي استخراج کورکومين بررسي شد. در روش خيساندن اثر پارامترهاي مستقل شامل زمان، نسبت حلال هاي استون و اتانول به يکديگر و نسبت حلال به ماده جامد بر بهينه سازي شرايط استخراج کورکومين بررسي شد و بازدهي استخراج کورکومين، خلوص کورکومين استخراج شده و پارامترهاي رنگيL*a*b* کورکومين نيز مورد ارزيابي قرار گرفت. به منظور بهينه سازي شرايط استخراج در هر دو روش مذکور از روش سطح پاسخ و نرمافزار طرح آزمايش استفاده شد. نتايج نشان داد که در روش خيساندن نسبت حلال به ماده جامد اثر معنيداري (01/0>p) روي بازدهي استخراج کورکومين داشت اما در روش کربن دي اکسيد فوق بحراني، تغييرات دما، فشار و نسبت حلال کمکي به ماده جامد بر بازدهي استخراج کورکومين اثر معني دار (01/0>p) داشته است. همچنين حداکثر بازدهي استخراج کورکومين تحت شرايط بهينه در روشهاي خيساندن و کربن دي اکسيد فوق بحراني به ترتيب 24/5 و 11/8 درصد بهدست آمد که اين نتايج حاکي از اين است که بازدهي استخراج کورکومين در شرايط بهينه در روش کربن دي اکسيد فوق بحراني 8/2 درصد بيشتر از روش خيساندن بوده است.
Curcumin is a pigment extracted from the rhizome of turmeric (Curcuma longa L.), which has useful therapeutic properties in addition to its coloring properties.This study was conducted with the aim ofinvestigating the extraction of curcumin by carbon dioxide supercritical fluid and comparing the results with the maceration method. In the supercritical carbon dioxide method, the effect of temperature, pressure and ratio of auxiliary solvent to solid substance on curcumin extraction efficiency was investigated. In the maceration method, the effect of independent parameters, including time, the ratio of acetone and ethanol solvents to each other, and the solvent-to-solid ratio on the optimization of curcumin extraction conditions, was investigated. In this method, curcumin extraction efficiency, extracted curcumin purity, and L*a*b* color parameters of curcumin were evaluated. The RSM and test design software were used in order to optimize extraction conditions in both mentioned methods.According to the results, the solvent-to-solid ratio had a significant effect ( <0.01) on curcumin extraction efficiency in the maceration method, but in the supercritical carbon dioxide method, pressure changes and the auxiliary solvent-to-solid ratio had a significant effect ( <0.01) on curcumin extraction efficiency. Also, the maximum yield of curcumin extraction under optimal conditions in maceration and carbon dioxide supercritical methods was obtained as 5.24 and 8.11%, respectively, which results indicate that the yield of curcumin extraction under optimal conditions in carbon dioxide supercritical method was 2.8% more than the maceration method.
1. کراني فاطمه، سرگلزائي جواد. بررسي خواص فيزيکوشيميايي موسيلاژ باميه و مقايسه کارايي استخراج دو روش حلال و فوق بحراني. نشريه پژوهشهاي علوم و صنايع غذايي ايران.1400؛ 17 (2): 392-379.2020.39267.IFSTRJ/10.22067:doi.
2. مرتضوي، ع.، عزتي، ر.، فدوي، ا.، دزيابي، م.، عزيزي، ر. 1384. کاربرد سيال فوق بحراني در صنايع غذايي. انتشارات پريور، تبریز، ص: 25-10
3. موسسه استاندارد و تحقیقات صنعتی ایران، 1373. استاندارد زردچوبه ویژگی ها و روش های آزمون. استاندارد ملی ایران، شماره 252، چاپ اول.
4. Abtahi MS, Hosseini H, Fadavi A, Mirzaei H, Rahbari M. The optimization of the deep-fat frying process of coatedzucchini pieces by response surface methodology. Journal of Culinary Science & Technology. 2016;14(2):176–89. doi:10.1080/15428052.2015.1111181.
5. Briske D, Sax A, Mallard AR, Rao A. Increased bioavailability of curcumin using a novel dispersion technology system. European Journal of Nutrition. 2018; 58(5):1-11. doi:10.1007/s00394-018-1766-2.
6. Chen K, Go L, Li Q, Li HR, Zhang Y. Effects of co2 pretreatment on the volatile compoundsof dried chinese jujube (zizyphus jujuba miller). Food Science and Technology (Campinas). 2017;37(4):105-12. doi:10.1590/1678-457X.20016.
7. Cuica MD, Racovita RC. Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nano emulsions. International Journal of Molecular Sciences. 2023;24(10):88-101. doi:10.3390/ijms24108874.
8. Gugulothu DB, Desai P, Patravale VB. A versatile liquid chromatographic technique for pharmacokinetic estimation of curcumin in human plasma. Journal of Chromatographic Science. 2014;52(8):872–80.
doi:10.1093/chromsci/bmt131.
9. Gyers, R. H. and Montgomery, D.C. 1996. Response surface methodology: process and productoptimization using designed experiments. Wiley, London, pp.18-30.
10. Haaland, P.D. 1989. Experimental design in biotechnology. CRC Press, Sheffield, pp.45-58.
11. Haghbakhsh R, Hayer H, Saidi M, Keshtkari S, Esmaeilzadeh F. Density estimation of pure carbon dioxide at supercritical region andestimationsolubility of solid compounds in supercritical carbon dioxide: Correlationapproach based on sensitivity analysis. Fluid Phase Equilibria. 2013; 42(7):31-41. doi:10.1016/j.fluid.2012.12.029.
12. Haydari M, Mortazvi SA, Asili J, Bolorian S, Mohammadi A, Abdolshahi A. Optimisation of ultrasound-assisted extraction of phenolic compounds from flomidoschema parviflora. Journal of Herbal Drugs. 2013;3(1):7-13. doi:10.1016/j.jsamd.2012.01.006.
13. Hosary R, Teaima MH, Nabarawi M, Yousry Y, Eltahan M, Nassif R M. Topical delivery of extracted curcumin as curcumin loaded spanlastics anti-aging gel: Optimization using experimental design and ex-vivo evaluation. Saudi Pharmaceutical Journal. 2024;32(1):19-30. doi:10.1016/j.jsps.2023.101912.
14. Insuan W, Hansupalak A, Chahomchuen T. Extraction of curcumin from turmeric by ultrasonic-assisted extraction, identification, and evaluation of the biological activity. Journal of HerbmedPharmacol. 2022; 11(2):188-96.
doi:10.34172/jhp.2022.23.
15. Kanda H, Zhu L, Zhu W, Wang T. Ethanol-free extraction of curcumin and antioxidant activity of components from wet curcuma longa L. by liquefied dimethyl ether. Arabian Journal of Chemistry. 2022;16(4):104-14. doi:10.1016/j.arabjc.2023.104585.
16. Manasa PSL, Kamble AD, Chilakamarthi U. Various extraction techniques of curcumin-a comprehensive review. ACS OMEGA. 2023;8(38):34868–78. doi:10.1021/acsomega.3c04205.
17. Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using taguchi L9 orthogonal design. Journal of Pharmaceutical and Biomedical Analysis. 2008;46(2):322-27. doi:10.1016/j.jpba.2008.10.020.
18. Marczylo TH, Steward WP, Gescher A. Rapid analysis of curcumin and curcumin metabolites in biomatrices using a novel ultraperformance liquid chromatography (uplc) method. Journal of Agricultural and Food Chemistry. 2009;57(3):793-99.
doi:10.1021/jf803038f.
19. Martinez HA, Paula JT, Kaano ACAV, Queiroga CL, Costa FTM, Cabral FA. Composition and antimalarial activity of extract of curcuma longa L. obtained by a combination of extraction processes using supercritical co2, ethanol and water as solvents. The Journal of Supercritical Fluids. 2017;119(8):122-29. doi:10.1016/j.supflu.2016.08.017.
20. Mohajeri M, Sahebkar AH. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Critical Reviews in Oncology/Hematology. 2018;122(5):30-51. doi:10.1016/j.critrevonc.2018.12.005.
21. Moraes MN, Zabot GL, Prado JM, Angela M, Meireles A. Obtainingantioxidants from botanic matrices applying novel extraction
techniques. Food and Public Health. 2013;3(4):195-214. doi:10.5923/j.fph.20130304.04.
22. Paulucci VP, Couto RO, Teixeira CCC, Freitas LAP. Optimization of the extraction of curcumin from curcuma longa rhizomes. RevistaBrasileira de Farmacognosia. 2013; 23(1):93-9. doi:10.1590/S0102695X2012005000117.
23. Rogers NM, Kireta S, Coates PTH. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo. Clinical & Experimental Immunology. 2010;162(3):460-73. doi:10.1111/j.1365-2249.2010.04232.x.
24. Scotter MJ. Synthesis and chemical characterization of curcuminoid coloring principles for their potential use as HPLC standards for the determination of curcumin color in foods. LWT- Food Science and Technology. 2009;42(8):1345-51.
doi:10.1016/j.lwt.2009.03.014.
25. Shirsath SR, Sable SS, Gaikwad SG, Sonawane SH, Saini DR, Gogate PR. Intensification of extraction of curcumin from curcuma amada using ultrasound assisted approach:effect of different operating parameters. Ultrasonics Sonochemistry. 2017;38(6):437-45. doi:10.1016/j.ultsonch.201.03.040.
26. Sogi DS, Sharma S, Oberoi DPS,Wani IA. Effect of extraction parameters on curcumin yield from turmeric. Food Science and Technology. 2010;47(3):310–15.
doi:10.1007/s13197-010-0047-8.
27. Spigno G, Tramelli L, Faveri DMD. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food engineering. 2007;81(1):211-18. doi:10.1016/j.jfoodeng.2006.10.021.
28. Wang Z, Mei X, Chen X, Rao S, Li J, Yang Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (citrus sinensis) peels: effect of different extraction methods thereon. LWT. 2023;173(3):114337-45. doi:10.1016/j.lwt.2022.114337.
29. Widmann AK, Wahl MA, Kammerer DR, Daniels R. Supercritical fluid extraction with co2 of curcuma longa L. in comparison to conventional solvent extraction. Pharmaceutics. 2022;14(9):1943-49. doi:10.3390/pharmaceutics14091943.
30. Xu JL, Wang WC, Liang H, Zhang Q, Li QY. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from curcuma longa L.using response surface methodology. Industrial Crops and Products. 2015;76(5):487-93.
doi:10.1016/j.indcrop.2015.07.025.