مدل پیشنهادی برای پیش بینی تولید ناخالص داخلی کاربرد مدل هایARIMA شبکه های عصبی و تبدیل موجک
محورهای موضوعی : دانش مالی تحلیل اوراق بهاداربیتا شایگانی 1 , امیربهداد سلامی 2 , رامین خوچیانی 3
1 - استادیار اقتصاد دانشگاه پیام نور -
2 - دکترای اقتصاد دانشگاه علامه طباطبایی
3 - دانشجوی دکترای اقتصاد دانشگاه پیام نور
کلید واژه: پیش بینی تولید ناخالص داخلی, تبدیل موجک, شبکه عصبی,
چکیده مقاله :
تولید ناخالص داخلی یکی از عمده ترین و کاربردی ترین شاخص های اقتصادی است؛ لذا پیش بینی آن،همواره توجه کلیه دست اندرکاران اقتصادی و علوم مرتبط را به خود جلب کرده است. هرچند روش های تجزیهو تحلیل سری زمانی و روش های غیرخطی همانند مدل های شبکه عصبی مدتهاست که برای پیش بینی این گونهمتغیرها به کار می روند، لیکن کاربرد ابزار توانمند موجک در پردازش داده ها و بررسی لایه های پنهان آن نشانمی دهد که سری زمانی تولید ناخالص داخلی از جمله متغیرهایی است که پس از تجزیه در برخی سطوح، رفتاریخطی و در برخی سطوح رفتاری غیرخطی دارد؛ از این رو پیشنهاد شد که ابتدا سری زمانی مذکور به صورتداده های فصلی طی دوره 7631 تا 7631 ، با استفاده از تکنیک موجک به مولفه های مقیاسی متفاوتی تجزیه شده وسپس با کمک مدل ARIMA سری تقریب )روند( و سیکل های با رفتار خطی، و آنگاه با مدل شبکه عصبیسیکل های با رفتار غیرخطی پیش بینی شوند. این مقاله نشان می دهد که نتیجه اعمال این روش پیشنهادی درمقایسه با مدل شبکه عصبی خودتوضیح غیرخطی با لوپ بسته و مدل ARIMA دقیق تر و کارآتر است.
Forecasting GDP, is one of the most important economic issues and due to its practical applications has attracted a lot of attentions. Methods of time series analysis and nonlinear methods such as neural network models as long as are used to forecast such variables . GDP's time series is variable that after the decomposition, with wavelet - a powerful tool for processing data- and analyzing the hidden layers, at some levels, has linear behavior and at other levels, has nonlinear behavior.Therefore, the proposed method would be thus that the time series of quarterly GDP for the period 1367 to 1389 using wavelet techniques are decomposed into different scale components. Next, the approximation level (trend) and cycles with linear behavior have predicted with ARIMA model, and cycles with the nonlinear behavior have predicted with neural network model.The results show that the performance of the proposed method is better than the neural network (NARNET) and ARIMA models.